CMSC 330: Organization of
Programming Languages

Context-Free Grammars:
Pushdown Automaton

Reminders

* Project 2 Due Oct. 12

CMSC 330 2

Regular expressions and CFGs

Description Machine
regular regular DFAs, NFAs
languages expressions

context-free context-free pushdown
languages grammars automata
(PDAs)

* Programming languages are not regular

— Matching (an arbitrary number of) brackets so that
they are balanced

» Usually almost context-free, with some hacks

CMSC 330

Equivalence of DFA and regular grammars

same as X —= a

®—a>®
‘l‘ ‘.’0 AR X — 1X[0Y
g

¥ —=10

Z

@ yields X ——a

To go from regular grammar to F34, make the following transformations:

CMSC 330

Pushdown Automaton (PDA)

* A pushdown automaton (PDA) is an abstract machine
similar to the DFA

— Has a finite set of states
— Also has a pushdown stack
* Moves of the PDA are as follows:

— An input symbol is read and the top symbol on the
stack is read
— Based on both inputs, the machine
* Enters a new state, and
» Writes zero or more symbols onto the pushdown stack
» Or pops zero or more symbols from the stack
— String accepted if the stack is empty AND the string
has ended

CMSC 330

Power of PDAs

* PDAs are more powerful than DFAs

— a"b", which cannot be recognized by a DFA, can
easily be recognized by the PDA
» Stack all a symbols and, for each b, pop an a off the stack.

« If the end of input is reached at the same time that the stack
becomes empty, the string is accepted

CMSC 330

Context-free Grammars in Practice

» Regular expressions are used to turn raw text into a
string of tokens
— E.g., “if’, “then”, “identifier”, etc.
— Whitespace and comments are simply skipped
— These tokens are the input for the next phase of compilation
— Standard tools used include lex and flex
* Many others for Java
* CFGs are used to turn tokens into parse trees
— This process is called parsing
— Standard tools used include yacc and bison
» Those trees are then analyzed by the compiler, which
eventually produces object code

CMSC 330 7

Parsing

» There are many efficient techniques for turning
strings into parse trees
— They all have strange names, like LL(k), SLR(k), LR(k)...
— Take CMSC 430 for more details

* We will look at one very simple technique:
recursive descent parsing

— This is a “top-down” parsing algorithm because we’re
going to begin at the start symbol and try to produce the
string

CMSC 330 8

Example

E-id=n|{L}
L>E;L]|e
— Here nis an integer and id is an identifier

* One input might be
-{x=3{y=4}%}
— This would get turned into a list of tokens
{x=3:{y=4;1};}
— And we want to turn it into a parse tree

CMSC 330

Example (cont'd)

E>id=n|{L} ﬁ\
LoE;L|e {/L\\}
{x=3{y=4}1} E L
/]\ N
x = 3 E ; L
AN
{ L }
1~
E ; L
AN N\

CMSC 330

Parsing Algorithm

» Goal: determine if we can produce a string to be
parsed from the grammar's start symbol

+ At each step, we'll keep track of two facts
— What tree node are we trying to match?
— What is the next token (lookahead) of the input string?

* There are three cases:

— If we’re trying to match a terminal and the next token
(lookahead) is that token, then succeed, advance the
lookahead, and continue

— If we're trying to match a nonterminal then pick which
production to apply based on the lookahead

— Otherwise, fail with a parsing error
CMSC 330 1

Example (cont'd)

E-id=n|{L} {/EL\}
LoE:L|e AN
AN
Xx = 3 E ; L
AN
{ L } €
T~
AR
x=3:{y=4:};} = ¢
Nriitr iy v -
lookahead

CMSC 330 12

Definition of First(y)

* First(y), for any terminal or nonterminal vy, is the
set of initial terminals of all strings that y may
expand to

— We'll use this to decide what production to apply

CMSC 330 13

Definition of First(y), cont’d

* For aterminal a, First(a) ={a}
* For a nonterminal N:
— If N - €, then add ¢ to First(N)
- IfN - a; 0, ... a,, then (note the q; are all the symbols

on the right side of one single production):

+ Add First(a,0, ... a,) to First(N), where First(a, a, ... a,) is
defined as

— First(a,) if € ¢ First(a,)
— Otherwise (First(a,) — €)u First(a, ... a,)
* If € € First(o;) for all i, 1 <i <k, then add ¢ to First(N)

CMSC 330 14

Examples

E-id=n|{L} E-id=n|{L}|¢

L-E;L]|¢ L-E;L]|¢

First(id) = { id } First(id) = {id }

First("=") ={"="} First("=") = {"="}

Firstin) ={n} Firstin)={n}

First("{")= {"{"} First("{")={"{"}

First("}")={"}"} First(")")={"}")

First(";")={";"} First(";")={ "

First(E) = {id, "{" } First(E) ={id, "{", € }
First(L) = {id, "{", € } First(L) = {id, "{", ";", eé

Implementing a Recursive Descent Parser

» For each terminal symbol a, create a function
parse_a, which:

— If the lookahead is a it consumes the lookahead by
advancing the lookahead to the next token, and returns

— Otherwise fails with a parse error if the lookahead is not
a

» For each nonterminal N, create a function parse N

— This function is called when we’re trying to parse a part
of the input which corresponds to (or can be derived
from) N

— parse_S for the start symbol S begins the process

CMSC 330 16

Implementing a Recursive Descent Parser, con't.

» The body of parse_N for a nonterminal N does
the following:

— Let N - B, | ... | B, be the productions of N
* Here B;is the entire right side of a production- a sequence of
terminals and nonterminals
— Pick the production N - 8, such that the lookahead is
in First(B;)
* It must be that First(B;) n First(B,) = & fori #]
« If there is no such production, but N — € then return
» Otherwise, then fail with a parse error
— Suppose B; = a4 a, ... a,. Then call parse_a(); ... ;
parse_a,() to match the expected right-hand side,
0and return

CMSC 33

Example

- let parse term t =
E-id=n |{ L'} if !lookahead = t

L-E ;L |£ then lo?kahead := <next token>
else raise <Parse error>

let rec parse E () =
if lookahead = 'id' then begin
parse term 'id';
parse _term '=';
parse term 'n'
end
else if lookahead = '{' then begin
parse term '{';
parse L ();
(not quite parse term '}';
valid OCaml) end
else raise <Parse error>;

CMSC 330

Example (cont’d)

E-id=n|{L}
L-E;L|e

/ mutually recursive with previous let rec

and parse L ()
if lookahead
parse E ();
parse term ';';
parse L ()
end
(* else return (not an error) *)

1id' || lookahead = '{' then begin

CMSC 330 19

Things to Notice

 If you draw the execution trace of the parser as a tree,
then you get the parse tree
+ This parsing strategy may fail on certain grammars
because the First sets overlap
— This doesn’t mean the grammar is not usable in a parser, just not
in this type of parser
» Consider parsing the grammarE - n+E | n
— First(E) = n = First(n), so we can’t use this technique

» Exercise: Rewrite this grammar so it becomes amenable to our
parsing technique

» This is a predictive parser because we use the lookahead
to determine exactly which production to use

CMSC 330 20

10

More on Limitations

* How about the grammar S - Sa | €
— First(Sa) = a, so we’re ok as far as which production

— But the body of parse_S() has an infinite loop
« if (lookahead = "a") then parse_S()
— This technique cannot handle left-recursion

— Exercise: rewrite this grammar to be right-recursive

CMSC 330 21

Expr Grammar for Top-Down Parsing

E-TE
E'>¢|+E
TP T
Toe|*T
P-n| (E)

— Notice we can always decide what production to
choose with only one symbol of lookahead

CMSC 330 22

11

Tradeoffs with Other Approaches

* Recursive descent parsers are easy to write

— The formal definition is a little clunky, but if you follow
the code then it's almost what you might have done if
you weren't told about grammars formally

— They're unable to handle certain kinds of grammars

* More powerful techniques need tool support,
such as yacc and bison (which can be slower)

» Recursive descent is good for a quick hack

— Though using the tools is pretty fast if you're familiar
with them

CMSC 330 23

General parsing algorithms

* As with NFA, we can also have a NDPDA
— NDPDA are more powerful than DPDA

— NDPDA can recognize even length palindromes over {0,1}*, but a
DPDA cannot. Why? (Hint: Consider palindromes over {0,1}2{0,1})

— (Remember that DFA and NFA do accept the same sets.)
* Knuth in 1965 showed that the deterministic PDAs were equivalent
to a class of grammars called LR(k) [Left-to-right parsing with k
symbol lookahead]

— Create a PDA that decides whether to stack the next symbol or pop a
symbol off the stack by looking k symbols ahead.

— This is a deterministic process, and for k=1 is efficient.
* LR(k), SLR(k) [Simple LR(k)], and LALR(k) [Lookahead LR(k)] are
all techniques used today to build efficient parsers.
— Recursive descent is a form of LL(k) parsing
— More in CMSC 430 ...

CMSC 330 24

12

What's Wrong with Parse Trees?

» Parse trees contain too much information

— E.g., they have parentheses and they have extra
nonterminals for precedence

— This extra stuff is needed for parsing

+ But when we want to reason about languages, it
gets in the way (it's too much detail)

CMSC 330 25

Abstract Syntax Trees (ASTSs)

* An abstract syntax tree is a more compact,
abstract representation of a parse tree, with only
the essential parts

E/T\E c/*\+
/N N\
parse / \ AST

tree E + E

b d

CMSC 330 26

13

ASTs (cont'd)

* Intuitively, ASTs correspond to the data structure
you'd use to represent strings in the language

— Note that grammars describe trees (so do OCaml
datatypes which we’ll see later)

_E-a|b|c|E+E|E-E|E*E|(E)
/" \
C +
/\
b d

CMSC 330 27

The Compilation Process

N Compiler [—» target
program program
Intermediate
Lexing > Parsing [AST > Code | Optimization
Generation
reglc__e:gs ggﬁ: (may not actually
be constructed)
CMSC 330 28

14

Producing an AST

* To produce an AST, we modify the parse()
functions to construct the AST along the way

CMSC 330

29

Producing an AST (cont’d)

type ast =
Assn of string * int
| Block of ast list

CMSC 330

let rec parse E () =

if lookahead = 'id' then
let id = parse term 'id' in

let = parse term '=' in
let n = parse term 'n' in
Assn(id, int of string n)

else if lookahead = '{' then begin

let = parse term '{' in
let 1 = parse L () in
let = parse term '}' in
Block 1
end
else raise <Parse error>;

30

15

Producing an AST (cont'd)

type ast =
Assn of string * int
| Block of ast list

CMSC 330

and parse L ()
if lookahead = 'id' then
let e = parse E () in

let @ = parse term ';'
let 1 = parse L () in
e::1
else []

in

31

16

