
1

CMSC 330: Organization of
Programming Languages

Context-Free Grammars:
Pushdown Automaton

CMSC 330 2

Reminders

• Project 2 Due Oct. 12

CMSC 330 3

Regular expressions and CFGs

• Programming languages are not regular
– Matching (an arbitrary number of) brackets so that

they are balanced
• Usually almost context-free, with some hacks

MachineDescription

pushdown
automata
(PDAs)

context-free
grammars

context-free
languages

DFAs, NFAsregular
expressions

regular
languages

CMSC 330 4

Equivalence of DFA and regular grammars

CMSC 330 5

Pushdown Automaton (PDA)
• A pushdown automaton (PDA) is an abstract machine

similar to the DFA
– Has a finite set of states
– Also has a pushdown stack

• Moves of the PDA are as follows:
– An input symbol is read and the top symbol on the

stack is read
– Based on both inputs, the machine

• Enters a new state, and
• Writes zero or more symbols onto the pushdown stack
• Or pops zero or more symbols from the stack

– String accepted if the stack is empty AND the string
has ended

CMSC 330 6

Power of PDAs
• PDAs are more powerful than DFAs

– anbn, which cannot be recognized by a DFA, can
easily be recognized by the PDA

• Stack all a symbols and, for each b, pop an a off the stack.
• If the end of input is reached at the same time that the stack

becomes empty, the string is accepted

2

CMSC 330 7

Context-free Grammars in Practice
• Regular expressions are used to turn raw text into a

string of tokens
– E.g., “if”, “then”, “identifier”, etc.
– Whitespace and comments are simply skipped
– These tokens are the input for the next phase of compilation
– Standard tools used include lex and flex

• Many others for Java

• CFGs are used to turn tokens into parse trees
– This process is called parsing
– Standard tools used include yacc and bison

• Those trees are then analyzed by the compiler, which
eventually produces object code

CMSC 330 8

Parsing

• There are many efficient techniques for turning
strings into parse trees
– They all have strange names, like LL(k), SLR(k), LR(k)...
– Take CMSC 430 for more details

• We will look at one very simple technique:
recursive descent parsing
– This is a “top-down” parsing algorithm because we’re

going to begin at the start symbol and try to produce the
string

CMSC 330 9

Example

E � id = n | { L }
L � E ; L | �

– Here n is an integer and id is an identifier

• One input might be
– { x = 3; { y = 4; }; }
– This would get turned into a list of tokens

{ x = 3 ; { y = 4 ; } ; }

– And we want to turn it into a parse tree

CMSC 330 10

Example (cont’d)
E � id = n | { L }
L � E ; L | �

{ x = 3; { y = 4; }; }

E

{ L }

E ; L

x = 3 E ; L

{ L }

E ; L

y = 4 �

�

CMSC 330 11

Parsing Algorithm
• Goal: determine if we can produce a string to be

parsed from the grammar's start symbol
• At each step, we'll keep track of two facts

– What tree node are we trying to match?
– What is the next token (lookahead) of the input string?

• There are three cases:
– If we’re trying to match a terminal and the next token

(lookahead) is that token, then succeed, advance the
lookahead, and continue

– If we’re trying to match a nonterminal then pick which
production to apply based on the lookahead

– Otherwise, fail with a parsing error
CMSC 330 12

Example (cont’d)
E � id = n | { L }
L � E ; L | �

{ x = 3 ; { y = 4 ; } ; }

E

{ L }

E ; L

x = 3 E ; L

{ L }

E ; L

y = 4 �

�

lookahead

3

CMSC 330 13

Definition of First(�)
• First(�), for any terminal or nonterminal �, is the

set of initial terminals of all strings that � may
expand to
– We’ll use this to decide what production to apply

CMSC 330 14

Definition of First(�), cont’d
• For a terminal a, First(a) = { a }
• For a nonterminal N:

– If N � �, then add � to First(N)
– If N � �1 �2 ... �n, then (note the �i are all the symbols

on the right side of one single production):
• Add First(�1�2 ... �n) to First(N), where First(�1 �2 ... �n) is

defined as
– First(�1) if � ∉ First(�1)
– Otherwise (First(�1) – �)� First(�2 ... �n)

• If � ∈ First(�i) for all i, 1 ≤ i ≤ k, then add � to First(N)

CMSC 330 15

Examples
E � id = n | { L }
L � E ; L | �

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{" }
First(L) = { id, "{", � }

E � id = n | { L } | �
L � E ; L | �

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{", � }
First(L) = { id, "{", ";", � }

CMSC 330 16

Implementing a Recursive Descent Parser

• For each terminal symbol a, create a function
parse_a, which:
– If the lookahead is a it consumes the lookahead by

advancing the lookahead to the next token, and returns
– Otherwise fails with a parse error if the lookahead is not

a
• For each nonterminal N, create a function parse_N

– This function is called when we’re trying to parse a part
of the input which corresponds to (or can be derived
from) N

– parse_S for the start symbol S begins the process

CMSC 330 17

Implementing a Recursive Descent Parser, con't.

• The body of parse_N for a nonterminal N does
the following:
– Let N � �1 | ... | �k be the productions of N

• Here �i is the entire right side of a production- a sequence of
terminals and nonterminals

– Pick the production N � �i such that the lookahead is
in First(�i)

• It must be that First(�i) � First(�j) = � for i � j
• If there is no such production, but N � � then return
• Otherwise, then fail with a parse error

– Suppose �i = �1 �2 ... �n. Then call parse_�1(); ... ;
parse_�n() to match the expected right-hand side,
and return

CMSC 330 18

Example

E � id = n | { L }
L � E ; L | �

let parse_term t =
if !lookahead = t

then lookahead := <next token>
else raise <Parse error>

let rec parse_E () =
if lookahead = 'id' then begin

parse_term 'id';
parse_term '=';
parse_term 'n'

end
else if lookahead = '{' then begin

parse_term '{';
parse_L ();
parse_term '}';

end
else raise <Parse error>;

(not quite
valid OCaml)

4

CMSC 330 19

Example (cont’d)

E � id = n | { L }
L � E ; L | �

and parse_L () =
if lookahead = 'id'|| lookahead = '{' then begin

parse_E ();
parse_term ';';
parse_L ()

end
(* else return (not an error) *)

mutually recursive with previous let rec

CMSC 330 20

Things to Notice
• If you draw the execution trace of the parser as a tree,

then you get the parse tree
• This parsing strategy may fail on certain grammars

because the First sets overlap
– This doesn’t mean the grammar is not usable in a parser, just not

in this type of parser

• Consider parsing the grammar E � n + E | n
– First(E) = n = First(n), so we can’t use this technique

• Exercise: Rewrite this grammar so it becomes amenable to our
parsing technique

• This is a predictive parser because we use the lookahead
to determine exactly which production to use

CMSC 330 21

More on Limitations
• How about the grammar S � Sa | �

– First(Sa) = a, so we’re ok as far as which production
– But the body of parse_S() has an infinite loop

• if (lookahead = "a") then parse_S()

– This technique cannot handle left-recursion
– Exercise: rewrite this grammar to be right-recursive

CMSC 330 22

Expr Grammar for Top-Down Parsing

E � T E'
E' � � | + E
T � P T'
T' � � | * T
P � n | (E)

– Notice we can always decide what production to
choose with only one symbol of lookahead

CMSC 330 23

Tradeoffs with Other Approaches

• Recursive descent parsers are easy to write
– The formal definition is a little clunky, but if you follow

the code then it’s almost what you might have done if
you weren't told about grammars formally

– They're unable to handle certain kinds of grammars
• More powerful techniques need tool support,

such as yacc and bison (which can be slower)
• Recursive descent is good for a quick hack

– Though using the tools is pretty fast if you’re familiar
with them

CMSC 330 24

General parsing algorithms
• As with NFA, we can also have a NDPDA

– NDPDA are more powerful than DPDA
– NDPDA can recognize even length palindromes over {0,1}*, but a

DPDA cannot. Why? (Hint: Consider palindromes over {0,1}*2{0,1}*)
– (Remember that DFA and NFA do accept the same sets.)

• Knuth in 1965 showed that the deterministic PDAs were equivalent
to a class of grammars called LR(k) [Left-to-right parsing with k
symbol lookahead]
– Create a PDA that decides whether to stack the next symbol or pop a

symbol off the stack by looking k symbols ahead.
– This is a deterministic process, and for k=1 is efficient.

• LR(k), SLR(k) [Simple LR(k)], and LALR(k) [Lookahead LR(k)] are
all techniques used today to build efficient parsers.
– Recursive descent is a form of LL(k) parsing
– More in CMSC 430 …

5

CMSC 330 25

What’s Wrong with Parse Trees?

• Parse trees contain too much information
– E.g., they have parentheses and they have extra

nonterminals for precedence
– This extra stuff is needed for parsing

• But when we want to reason about languages, it
gets in the way (it’s too much detail)

CMSC 330 26

Abstract Syntax Trees (ASTs)

• An abstract syntax tree is a more compact,
abstract representation of a parse tree, with only
the essential parts

parse
tree AST

CMSC 330 27

ASTs (cont’d)

• Intuitively, ASTs correspond to the data structure
you’d use to represent strings in the language
– Note that grammars describe trees (so do OCaml

datatypes which we’ll see later)
– E � a | b | c | E+E | E-E | E*E | (E)

CMSC 330 28

The Compilation Process

CMSC 330 29

Producing an AST

• To produce an AST, we modify the parse()
functions to construct the AST along the way

CMSC 330 30

Producing an AST (cont’d)
type ast =

Assn of string * int
| Block of ast list

let rec parse_E () =
if lookahead = 'id' then

let id = parse_term 'id' in
let _ = parse_term '=' in
let n = parse_term 'n' in

Assn(id, int_of_string n)
else if lookahead = '{' then begin

let _ = parse_term '{' in
let l = parse_L () in
let _ = parse_term '}' in

Block l
end
else raise <Parse error>;

6

CMSC 330 31

Producing an AST (cont’d)
type ast =

Assn of string * int
| Block of ast list

and parse_L () =
if lookahead = 'id' then

let e = parse_E () in
let _ = parse_term ';' in
let l = parse_L () in

e::l
else []

