
1

CMSC 330: Organization of
Programming Languages

Functional Programming with OCaml

CMSC 330 2

Background

• 1973 – ML developed at Univ. of Edinburgh
– Part of a theorem proving system LCF

• The Logic of Computable Functions

• SML/NJ (“Standard ML of New Jersey”)
– http://www.smlnj.org
– Developed at Bell Labs and Princeton; now Yale,

AT&T Research, Univ. of Chicago (among others)
• OCaml

– http://www.ocaml.org
– Developed at INRIA (The French National Institute

for Research in Computer Science)

CMSC 330 3

Dialects of ML

• Other dialects include MoscowML, ML Kit,
Concurrent ML, etc.
– But SML/NJ and OCaml are most popular
– O = “Objective,” but probably won’t cover objects

• Languages all have the same core ideas
– But small and annoying syntactic differences
– So you should not buy a book with ML in the title

• Because it probably won’t cover OCaml

CMSC 330 4

Features of ML
• Higher-order functions

– Functions can be parameters and return values

• “Mostly functional”
• Data types and pattern matching

– Convenient for certain kinds of data structures

• Type inference
– No need to write types in the source language, but the language

is statically typed
– Supports parametric polymorphism (generics in Java, templates

in C++)

• Exceptions
• Garbage collection

CMSC 330 5

Functional languages

• In a pure functional language, every program is
just an expression evaluation

let add1 x = x + 1;;

let rec add (x,y) = if x=0 then y else add(x-1, add1(y));;

add(2,3) = add(1,add1(3)) = add(0,add1(add1(3)))
= add1(add1(3)) = add1(3+1) = 3+1+1
= 5

OCaml has this basic behavior, but has additional
features to ease the programming process.

- Less emphasis on data storage
- More emphasis on function execution

CMSC 330 6

A Small OCaml Program- Things to Notice

(* A small OCaml program *)
let x = 37;;
let y = x + 5;;
print_int y;;
print_string

"\n";;

Use (* *) for comments (may nest)

;; ends a top-level expression

Use let to bind variables

No type declarations

Need to use correct print function
(OCaml also has printf)

Line breaks, spacing ignored (like
C, C++, Java, not like Ruby)

2

CMSC 330 7

Run, OCaml, Run

• OCaml programs can be compiled using ocamlc
– Produces .cmo (“compiled object”) and .cmi

(“compiled interface”) files
• We’ll talk about interface files later

– By default, also links to produce executable a.out
• Use -o to set output file name
• Use -c to compile only to .cmo/.cmi and not to link
• You can use a Makefile if you need to compile your files

CMSC 330 8

Run, OCaml, Run (cont’d)

• Compiling and running the previous small
program:

% ocamlc ocaml1.ml

% ./a.out

42

%

(* A small OCaml program *)
let x = 37;;
let y = x + 5;;
print_int y;;
print_string "\n";;

ocaml1.ml:

CMSC 330 9

Run, OCaml, Run (cont’d)
Expressions can also be typed and evaluated at the top-level:
3 + 4;;
- : int = 7

let x = 37;;
val x : int = 37

x;;
- : int = 37

let y = 5;;
val y : int = 5

let z = 5 + x;;
val z : int = 42

print_int z;;
42- : unit = ()

print_string "Colorless green ideas sleep furiously";;
Colorless green ideas sleep furiously- : unit = ()

print_int "Colorless green ideas sleep furiously";;
This expression has type string but is here used with type int

gives type and value of each expr

unit = “no interesting value” (like void)

“-” = “the expression you just typed”

CMSC 330 10

Run, OCaml, Run (cont’d)

• Files can be loaded at the top-level
% ocaml

Objective Caml version 3.08.3

#use "ocaml1.ml";;

val x : int = 37

val y : int = 42

42- : unit = ()

- : unit = ()

x;;

- : int = 37

#use loads in a file one line at a time

(* A small OCaml program *)
let x = 37;;
let y = x + 5;;
print_int y;;
print_string "\n";;

ocaml1.ml:

CMSC 330 11

Basic Types in OCaml

• Read e : t as “expression e has type t”
42 : int true : bool
"hello" : string 'c' : char
3.14 : float () : unit (* don’t care value *)

• OCaml has static types to help you avoid errors
– Note: Sometimes the messages are a bit confusing
1 + true;;

This expression has type bool but is here used with
type int

– Watch for the underline as a hint to what went wrong
– But not always reliable

CMSC 330 12

More on the Let Construct

• let is more often used for local variables
– let x = e1 in e2 means

• Evaluate e1
• Then evaluate e2, with x bound to result of evaluating e1
• x is not visible outside of e2

let pi = 3.14 in pi *. 3.0 *. 3.0;;
pi;;

bind pi in body of let floating point multiplication

error

3

CMSC 330 13

More on the Let Construct (cont’d)

• Compare to similar usage in Java/C

• In the top-level, omitting in means “from now on”:
let pi = 3.14;;
(* pi is now bound in the rest of the top-level scope *)

let pi = 3.14 in
pi *. 3.0 *. 3.0;;

pi;;

{
float pi = 3.14;

pi * 3.0 * 3.0;
}
pi;

CMSC 330 14

Nested Let

• Uses of let can be nested

let pi = 3.14 in
let r = 3.0 in

pi *. r *. r;;
(* pi, r no longer in scope *)

{
float pi = 3.14;
float r = 3.0;

pi * r * r;
}
/* pi, r not in scope */

CMSC 330 15

Defining Functions

let next x = x + 1;;
next 3;;
let plus (x, y) = x + y;;
plus (3, 4);;

use let to define functions
list parameters after function name

no return statementno parentheses on function calls

CMSC 330 16

Local Variables

• You can use let inside of functions for locals

– And you can use as many lets as you want

let area r =
let pi = 3.14 in
pi *. r *. r

let area d =
let pi = 3.14 in
let r = d /. 2.0 in
pi *. r *. r

CMSC 330 17

Function Types

• In OCaml, -> is the function type constructor
– The type t1 -> t2 is a function with argument or

domain type t1 and return or range type t2

• Examples
– let next x = x + 1 (* type int -> int *)

– let fn x = (float_of_int x) *. 3.14

(* type int -> float *)

– print_string (* type string -> unit *)

• Type a function name at top level to get its type
CMSC 330 18

Type Annotations

• The syntax (e : t) asserts that “e has type t”
– This can be added anywhere you like

let (x : int) = 3

let z = (x : int) + 5

• Use to give functions parameter and return types
let fn (x:int):float =

(float_of_int x) *. 3.14

– Note special position for return type
– Thus let g x:int = ... means g returns int

• Very useful for debugging, especially for more
complicated types

4

CMSC 330 19

;; versus ;

• ;; ends an expression in the top-level of OCaml
– Use it to say: “Give me the value of this expression”
– Not used in the body of a function
– Not needed after each function definition

• Though for now it won’t hurt if used there

• e1; e2 evaluates e1 and then e2, and returns e2
let print_both (s, t) = print_string s; print_string t;

"Printed s and t."

– notice no ; at end---it’s a separator, not a terminator
print_both (”Colorless green ", ”ideas sleep")

Prints ”Colorless green ideas sleep", and returns
"Printed s and t."

CMSC 330 20

Lists in OCaml

• The basic data structure in OCaml is the list
– Lists are written as [e1; e2; ...; en]

[1;2;3]
- : int list = [1;2;3]

– Notice int list – lists must be homogeneous
– The empty list is []

[]
- : 'a list

– The 'a means “a list containing anything”
• we’ll see more about this later

– Warning: Don’t use a comma instead of a semicolon
• Means something different (we’ll see in a bit)

CMSC 330 21

struct list {
int elt;
struct list *next;

};
…
struct list *l;
…
i = 0;
while (l != NULL) {

i++;
l = l->next;

}

Consider a Linked List in C

CMSC 330 22

Lists in OCaml are Linked

• [1;2;3] is represented above
– A nonempty list is a pair (element, rest of list)
– The element is the head of the list
– The pointer is the tail or rest of the list

• ...which is itself a list!

• Thus in math a list is either
– The empty list []
– Or a pair consisting of an element and a list

• This recursive structure will come in handy shortly

CMSC 330 23

Lists are Linked (cont’d)

• :: prepends an element to a list
– h::t is the list with h as the element at the beginning

and t as the “rest”
– :: is called a constructor, because it builds a list
– Although it’s not emphasized, :: does allocate memory

• Examples
3::[] (* The list [3] *)
2::(3::[]) (* The list [2; 3] *)
1::(2::(3::[])) (* The list [1; 2; 3] *)

CMSC 330 24

More Examples
let y = [1;2;3] ;;

val y : int list = [1; 2; 3]

let x = 4::y ;;

val x : int list = [4; 1; 2; 3]

let z = 5::y ;;

val z : int list = [5; 1; 2; 3]

• not modifying existing lists, just creating new lists
let w = [1;2]::y ;;

This expression has type int list but is here
used with type int list list

• The left argument of :: is an element
• Can you construct a list y such that [1;2]::y makes sense?

5

CMSC 330 25

Lists of Lists

• Lists can be nested arbitrarily
– Example: [[9; 10; 11]; [5; 4; 3; 2]]

• (Type int list list)

CMSC 330 26

Practice

• What is the type of:
– [1;2;3]

– [[[]; []; [1.3;2.4]]]

– let func x = x::(0::[])

int list

float list list list

int -> int list

CMSC 330 27

Pattern Matching
• To pull lists apart, use the match construct

match e with p1 -> e1 | ... | pn -> en

• p1...pn are patterns made up of [], ::, and pattern
variables

• match finds the first pk that matches the shape of e
– Then ek is evaluated and returned
– During evaluation of pk, pattern variables in pk are bound to the

corresponding parts of e

• An underscore _ is a wildcard pattern
– Matches anything
– Doesn’t add any bindings
– Useful when you want to know something matches, but don’t care

what its value is
CMSC 330 28

Example
match e with p1 -> e1 | ... | pn -> en

let is_empty l = match l with

[] -> true

| (h::t) -> false

is_empty [] (* evaluates to true *)

is_empty [1] (* evaluates to false *)

is_empty [1;2;3] (* evaluates to false *)

CMSC 330 29

Pattern Matching (cont’d)

• let hd l = match l with (h::t) -> h

– hd [1;2;3] (* evaluates to 1 *)

• let hd l = match l with (h::_) -> h

– hd [] (* error! no pattern matches *)

• let tl l = match l with (h::t) -> t

– tl [1;2;3] (* evaluates to [2; 3] *)

CMSC 330 30

Missing Cases

• Exceptions for inputs that don’t match any pattern
– OCaml will warn you about non-exhaustive matches

• Example:
let hd l = match l with (h::_) -> h;;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

