
1

CMSC 330: Organization of
Programming Languages

Functional Programming with OCaml

CMSC 330 2

Reminders

• Homework 2 will be posted soon

2

CMSC 330 3

Review

• Recursion is how all looping is done

• OCaml can easily pass and return functions

CMSC 330 4

The Call Stack in C/Java/etc.

void f(void) {
int x;
x = g(3);

}

x <junk>

int g(int x) {
int y;
y = h(x);
return y;

}

int h (int z) {
return z + 1;

}

x 3
y <junk>
z 3

4

4

int main(){
f();
return 0;

}

f

g

h

3

CMSC 330 5

Nested Functions

• In OCaml, you can define functions anywhere
– Even inside of other functions

let pick_one n =
if n > 0 then (fun x -> x + 1)
else (fun x -> x - 1)

(pick_one -5) 6 (* returns 5 *)

let sum l =
fold ((fun (a, x) -> a + x), 0, l)

CMSC 330 6

Nested Functions (cont’d)

• You can also use let to define functions inside of
other functions

let sum l =
let add (a, x) = a + x in
fold (add, 0, l)

let pick_one n =
let add_one x = x + 1 in
let sub_one x = x - 1 in
if n > 0 then add_one else sub_one

4

CMSC 330 7

How About This?

– (Equivalent to...)

let addN (n, l) =
let add x = n + x in
map (add, l)

Accessing variable
from outer scope

let addN (n, l) =
map ((fun x -> n + x), l)

takes a number n and list l and
adds n to every element in l

CMSC 330 8

Consider the Call Stack Again

• Uh oh...how does add know the value of n?
– The wrong answer for OCaml: it reads it off the stack

• The language could do this, but can be confusing (see above)

– OCaml uses static scoping like C, C++, Java, and Ruby

let addN (n, l) =

map (add, l)

let map (f, n) = match n with
[] -> []

| (h::t) -> (f h)::(map (f, t))

addN (3, [1; 2; 3])

let add x = n + x in

n 3
l <list>
f <add>
n
x 1

5

CMSC 330 9

Static Scoping

• In static or lexical scoping, (nonlocal) names
refer to their nearest binding in the program text
– Going from inner to outer scope
– C example:

– In our example, add accesses addN’s n

int x;
void f() { x = 3; }
void g() { char *x = "hello"; f(); }

Refers to the x at file scope – that’s
the nearest x going from inner scope
to outer scope in the source code

CMSC 330 10

Returned Functions

• As we saw, in OCaml a function can return
another function as a result
– So consider the following example

– When the anonymous function is called, n isn’t even
on the stack any more!

• We need some way to keep n around after addN returns

let addN n = (fun x -> x + n)
(addN 3) 4 (* returns 7 *)

6

CMSC 330 11

Environments and Closures

• An environment is a mapping from variable
names to values
– Just like a stack frame

• A closure is a pair (f, e) consisting of function
code f and an environment e

• When you invoke a closure, f is evaluated using
e to look up variable bindings

CMSC 330 12

Example

let add x = (fun y -> x + y)

(add 3) 4 ���� <closure> 4 ���� 3 + 4 ���� 7

7

CMSC 330 13

Another Example

let mult_sum (x, y) =
let z = x + y in

fun w -> w * z

(mult_sum (3, 4)) 5 ���� <closure> 5 ���� 5 * 7 ���� 35

CMSC 330 14

Yet Another Example

let twice (n, y) =
let f x = x + n in

f (f y)

twice (3, 4) ���� <closure> (<closure> 4) ���� <closure> 7 ���� 10

8

CMSC 330 15

Still Another Example

let add x = (fun y -> (fun z -> x + y + z))

(((add 1) 2) 3) ���� ((<closure> 2) 3) ���� (<closure> 3) ���� 1+2+3

CMSC 330 16

Currying

• We just saw another way for a function to take
multiple arguments
– The function consumes one argument at a time,

creating closures until all the arguments are available

• This is called currying the function
– Named after the logician Haskell B. Curry
– But Schönfinkel and Frege discovered it

• So it should probably be called Schönfinkelizing or Fregging

9

CMSC 330 17

Curried Functions in OCaml
• OCaml has a really simple syntax for currying

– This is identical to all of the following:

• Thus:
– add has type int -> (int -> int)

– add 3 has type int -> int
• The return of add x evaluated with x = 3

• add 3 is a function that adds 3 to its argument
– (add 3) 4 = 7

• This works for any number of arguments

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

CMSC 330 18

Curried Functions in OCaml (cont’d)

• Because currying is so common, OCaml uses
the following conventions:
– -> associates to the right

• Thus int -> int -> int is the same as
• int -> (int -> int)

– function application associates to the left
• Thus add 3 4 is the same as
• (add 3) 4

10

CMSC 330 19

Another Example of Currying

• A curried add function with three arguments:

– The same as

• Then...
– add_th has type int -> (int -> (int -> int))

– add_th 4 has type int -> (int -> int)

– add_th 4 5 has type int -> int

– add_th 4 5 6 is 15

let add_th x y z = x + y + z

let add_th x = (fun y -> (fun z -> x+y+z))

CMSC 330 20

Currying and the map Function

• Examples
let negate x = -x

map negate [1; 2; 3] (* returns [-1; -2; -3] *)

let negate_list = map negate

negate_list [-1; -2; -3]

let sum_pairs_list = map (fun (a, b) -> a + b)

sum_pairs_list [(1, 2); (3, 4)] (* [3; 7] *)

• What's the type of this form of map?

let rec map f l = match l with
[] -> []

| (h::t) -> (f h)::(map f t)

map : ('a -> 'b) -> 'a list -> 'b list

11

CMSC 330 21

Currying and the fold Function
let rec fold f a l = match l with

[] -> a
| (h::t) -> fold f (f a h) t

let add x y = x + y

fold add 0 [1; 2; 3]

let sum = fold add 0

sum [1; 2; 3]

let next n _ = n + 1

let length = fold next 0 (* warning: not polymorphic *)
length [4; 5; 6; 7]

• What's the type of this form of fold?
fold : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

CMSC 330 22

Another Convention

• Since functions are curried, function can often
be used instead of match
– function declares an anonymous function of one

argument
– Instead of

– It could be written

let rec sum l = match l with
[] -> 0

| (h::t) -> h + (sum t)

let rec sum = function
[] -> 0

| (h::t) -> h + (sum t)

12

CMSC 330 23

Another Convention (cont’d)
Instead of

It could be written

let rec map f l = match l with
[] -> []

| (h::t) -> (f h)::(map f t)

let rec map f = function
[] -> []

| (h::t) -> (f h)::(map f t)

CMSC 330 24

Currying is Standard in OCaml

• Pretty much all functions are curried
– Like the standard library map, fold, etc.

• OCaml plays a lot of tricks to avoid creating
closures and to avoid allocating on the heap
– It's unnecessary much of the time, since functions

are usually called with all arguments

13

CMSC 330 25

Higher-Order Functions in C

• C has function pointers but no closures
– (gcc has closures)

typedef int (*int_func)(int);

void app(int_func f, int *a, int n) {
int i;
for (i = 0; i < n; i++)

a[i] = f(a[i]);
}

int add_one(int x) { return x + 1; }

int main() {
int a[] = {1, 2, 3, 4};
app(add_one, a, 4);

}

CMSC 330 26

Higher-Order Functions in Ruby

• Use yield within a method to call a code block
argument

def my_collect(a)
b = Array.new(a.length)
i = 0
while i < a.length

b[i] = yield(a[i])
i = i + 1

end
return b

end

b = my_collect([1, 2, 3, 4, 5]) { |x| -x }

14

CMSC 330 27

Higher-Order Functions in Java/C++

• An object in Java or C++ is kind of like a closure
– it’s some data (like an environment)
– along with some methods (i.e., function code)

• So objects can be used to simulate closures

• When we get to Java in the course, we’ll study
how to implement some functional patterns in
OO languages

