
1

CMSC 330: Organization of
Programming Languages

Threads

CMSC 330 2

Synchronization

• Refers to mechanisms allowing a programmer to
control the execution order of some operations
across different threads in a concurrent program.

• Different languages have adopted different
mechanisms to allow the programmer to
synchronize threads.

• Java has several mechanisms; we'll look at locks
first.

CMSC 330 3

Locks (Java 1.5)

• Only one thread can hold a lock at once
– Other threads that try to acquire it block (or become

suspended) until the lock becomes available
• Reentrant lock can be reacquired by same thread

– As many times as desired
– No other thread may acquire a lock until has been

released same number of times it has been acquired

interface Lock {
void lock();
void unlock();
... /* Some more stuff, also */

}
class ReentrantLock implements Lock { ... }

CMSC 330 4

Avoiding Interference: Synchronization
public class Example extends Thread {

private static int cnt = 0;
static Lock lock = new ReentrantLock();
public void run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();
}

}
…

}

Lock, for protecting
the shared state

Acquires the lock;
Only succeeds if not
held by another
thread

Releases the lock

CMSC 330 5

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 0Shared state

T1 acquires the lock

CMSC 330 6

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 0Shared state

T1 reads cnt into y

y = 0

2

CMSC 330 7

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 0Shared state

T1 is preempted.
T2 attempts to
acquire the lock but fails
because it’s held by
T1, so it blocks

y = 0

CMSC 330 8

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 1Shared state

T1 runs, assigning
to cnt

y = 0

CMSC 330 9

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 1Shared state

T1 releases the lock
and terminates

y = 0

CMSC 330 10

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 1Shared state

T2 now can acquire
the lock.

y = 0

CMSC 330 11

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 1Shared state

T2 reads cnt into y.

y = 0

y = 1

CMSC 330 12

Applying Synchronization
int cnt = 0;
t1.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
t2.run() {

lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}

cnt = 2Shared state

T2 assigns cnt,
then releases the lock

y = 0

y = 1

3

CMSC 330 13

Different Locks Don’t Interact

• This program has a race condition
– Threads only block if they try to acquire a lock held

by another thread

static int cnt = 0;
static Lock l =

new ReentrantLock();
static Lock m =

new ReentrantLock();

void inc() {
l.lock();
cnt++;
l.unlock();

}

void inc() {
m.lock();
cnt++;
m.unlock();

}

CMSC 330 14

Reentrant Lock Example

• Reentrancy is useful because each method can
acquire/release locks as necessary
– No need to worry about whether callers have locks
– Discourages complicated coding practices

static int cnt = 0;
static Lock l =

new ReentrantLock();

void inc() {
l.lock();
cnt++;
l.unlock();

}

void returnAndInc() {
int temp;

l.lock();
temp = cnt;
inc();
l.unlock();

}

CMSC 330 15

Deadlock

• Deadlock occurs when no thread can run
because all threads are waiting for a lock
– No thread running, so no thread can ever release a

lock to enable another thread to run

Thread 1

l.lock();
m.lock();
...
m.unlock();
l.unlock();

Lock l = new ReentrantLock();
Lock m = new ReentrantLock();

Thread 2

m.lock();
l.lock();
...
l.unlock();
m.unlock();

This code can
deadlock…
-- when will it work?
-- when will it

deadlock?

CMSC 330 16

Deadlock (cont’d)
• Some schedules work fine

– Thread 1 runs to completion, then thread 2

• But what if...
– Thread 1 acquires lock l
– The scheduler switches to thread 2
– Thread 2 acquires lock m

• Deadlock!
– Thread 1 is trying to acquire m
– Thread 2 is trying to acquire l
– And neither can, because the other thread has it

CMSC 330 17

Wait Graphs

l T1 Thread T1 holds lock l

mT2
Thread T2 attempting to
acquire lock m

Deadlock occurs when there is a cycle in the graph

CMSC 330 18

Wait Graph Example

l T1

mT2

T1 holds lock on l
T2 holds lock on m
T1 is trying to acquire a lock on m
T2 is trying to acquire a lock on l

4

CMSC 330 19

Another Case of Deadlock

• l not released if exception thrown
– Likely to cause deadlock some time later

static Lock l = new ReentrantLock();

void f () throws Exception {
l.lock();
FileInputStream f =

new FileInputStream("file.txt");
// Do something with f
f.close();
l.unlock();

}

CMSC 330 20

Solution: Use Finally
static Lock l = new ReentrantLock();

void f () throws Exception {
l.lock();
try {

FileInputStream f =
new FileInputStream("file.txt");

// Do something with f
f.close();

}
finally {

// This code executed no matter how we
// exit the try block
l.unlock();

}
}

CMSC 330 21

Synchronized

• This pattern is really common
– Acquire lock, do something, release lock under any

circumstances after we’re done
• Even if exception was raised etc.

• Java has a language construct for this
– synchronized (obj) { body }

• Every Java object has an implicit associated lock
– Obtains the lock associated with obj
– Executes body
– Release lock when scope is exited

• Even in cases of exception or method return
CMSC 330 22

Example

– Lock associated with o acquired before body
executed

• Released even if exception thrown

static Object o = new Object();

void f() throws Exception {
synchronized (o) {

FileInputStream f =
new FileInputStream("file.txt");

// Do something with f
f.close();

}
}

CMSC 330 23

Discussion

• An object and its associated lock are different!
– Holding the lock on an object does not affect what

you can do with that object in any way
– Ex:

synchronized(o) { ... } // acquires lock named o
o.f (); // someone else can call o’s methods
o.x = 3; // someone else can read and write o’s fields

object o
o’s lock

CMSC 330 24

Example: Synchronizing on this

• Does this program have a data race?
– No, both threads acquire locks on the same object

before they access shared data

class C {
int cnt;

void inc() {
synchronized (this) {

cnt++;
}

}
}

Thread 1
c.inc();

Thread 2
c.inc();

C c = new C();

5

CMSC 330 25

Example: Synchronizing on this (cont’d)

• Data race?
– No, threads acquire

locks on the same
object before they
access shared data

class C {
int cnt;

void inc() {
synchronized (this) {

cnt++;
}

}

void dec() {
synchronized (this) {

cnt--;
}

}
}

Thread 1
c.inc();

Thread 2
c.dec();

C c = new C();

CMSC 330 26

Example: Synchronizing on this (cont’d)

• Does this program have a data race?
– No, threads acquire different locks, but they write to

different objects, so that’s ok

class C {
int cnt;

void inc() {
synchronized (this) {

cnt++;
}

}
}

Thread 1
c1.inc();

Thread 2
c2.inc();

C c1 = new C();
C c2 = new C();

CMSC 330 27

Synchronized Methods

• Marking method as synchronized same as
synchronizing on this in body of the method
– The following two programs are the same

class C {
int cnt;

void inc() {
synchronized (this) {

cnt++;
}

}
}

class C {
int cnt;

synchronized void inc(){
cnt++;

}
}

CMSC 330 28

Synchronized Methods (cont’d)

• Data race?
– No, both acquire

same lock

class C {
int cnt;

void inc() {
synchronized (this) {

cnt++;
}

}

synchronized void dec() {
cnt--;

}
}

Thread 1
c.inc();

Thread 2
c.dec();

C c = new C();

CMSC 330 29

Synchronized Static Methods

• Warning: Static methods lock class object
– There’s no this object to lock

class C {
static int cnt;

void inc() {
synchronized (this) {

cnt++;
}

}

static synchronized void dec() {
cnt--;

} }

Thread 1
c.inc();

Thread 2
C.dec();

C c = new C();

CMSC 330 30

What can be synchronized?

• code blocks
• methods

– subclasses do not inherit synchronized keyword
– interface methods cannot be declared synchronized

• NOT fields
– but you could write synchronized accessor methods

• NOT constructors
– but you could include synchronized code blocks

• objects in an array

6

CMSC 330 31

Thread Scheduling

• When multiple threads share a CPU...
– When should the current thread stop running?
– What thread should run next?

• A thread can voluntarily yield() the CPU
– Call to yield may be ignored; don’t depend on it

• Preemptive schedulers can de-schedule the
current thread at any time
– Not all JVMs use preemptive scheduling, so a

thread stuck in a loop may never yield by itself.
Therefore, put yield() into loops

• Threads are de-scheduled whenever they
block (e.g., on a lock or on I/O) or go to sleep

CMSC 330 32

Thread Lifecycle

• While a thread executes, it goes through a
number of different phases
– New: created but not yet started
– Runnable: is running, or can run on a free CPU
– Blocked: waiting for I/O or on a lock
– Sleeping: paused for a user-specified interval
– Terminated: completed

CMSC 330 33

Which Thread to Run Next?

• Look at all runnable threads
– A good choice to run is one that just became

unblocked because
• A lock was released
• I/O became available
• It finished sleeping, etc.

• Pick a thread and start running it
– Can try to influence this with setPriority(int)
– Higher-priority threads get preference
– But you probably don’t need to do this

CMSC 330 34

Some Thread Methods
• void interrupt()

– Interrupts the thread
• void join() throws InterruptedException

– Waits for a thread to die/finish
• static void yield()

– Current thread gives up the CPU
• static void sleep(long milliseconds)

throws InterruptedException
– Current thread sleeps for the given time

• static Thread currentThread()
– Get Thread object for currently executing thread

CMSC 330 35

Example: Threaded, Sync Alarm

while (true) {
System.out.print("Alarm> ");

// read user input
String line = b.readLine();
parseInput(line);

// wait (in secs) asynchronously
if (m != null) {
// start alarm thread
Thread t = new AlarmThread(m,tm);
t.start();
// wait for the thread to complete
t.join();

}
}

CMSC 330 36

Daemon Threads
• Definition: Threads which run unattended and

perform periodic functions, generally associated
with system maintenance.

• void setDaemon(boolean on)
– Marks thread as a daemon thread
– Must be set before thread started

• By default, thread acquires status of thread that
spawned it

• Program execution terminates when no threads
running except daemons

7

CMSC 330 37

Key Ideas
• Multiple threads can run simultaneously

– Either truly in parallel on a multiprocessor
– Or can be scheduled on a single processor

• A running thread can be pre-empted at any time

• Threads can share data
– In Java, only fields can be shared
– Need to prevent interference

• Rule of thumb 1: You must hold a lock when accessing
shared data

• Rule of thumb 2: You must not release a lock until shared
data is in a valid state

– Overuse use of synchronization can create deadlock
• Rule of thumb: No deadlock if only one lock

CMSC 330 38

Producer/Consumer Design

• Suppose we are communicating with a shared
variable
– E.g., some kind of a buffer holding messages

• One thread produces input to the buffer
• One thread consumes data from the buffer
• How do we implement this?

– Use condition variables

CMSC 330 39

Conditions (Java 1.5)

• Condition created from a Lock
• await called with lock held

– Releases the lock
• But not any other locks held by this thread

– Adds this thread to wait set for lock
– Blocks the thread

• signallAll called with lock held
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

CMSC 330 40

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

void produce(Object o) {
lock.lock();
while (valueReady)

ready.await();
value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!valueReady)

ready.await();
Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

Producer/Consumer Example

CMSC 330 41

Use This Design

• This is the right solution to the problem
– Tempting to try to just use locks directly
– Very hard to get right
– Problems with other approaches often very subtle

• E.g., double-checked locking is broken

CMSC 330 42

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

void produce(object o) {
lock.lock();
while (valueReady);
value = o;
valueReady = true;
lock.unlock();

}

Object consume() {
lock.lock();
while (!valueReady);
Object o = value;
valueReady = false;
lock.unlock();

}

Broken Producer/Consumer Example

Threads wait with lock held – no way to make progress

8

CMSC 330 43

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

void produce(object o) {
while (valueReady);
lock.lock();
value = o;
valueReady = true;
lock.unlock();

}

Object consume() {
while (!valueReady);
lock.lock();
Object o = value;
valueReady = false;
lock.unlock();

}

Broken Producer/Consumer Example

valueReady accessed without a lock held – race condition

CMSC 330 44

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

void produce(object o) {
lock.lock();
if (valueReady)

ready.await();
value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
if (!valueReady)

ready.await();
Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

Broken Producer/Consumer Example

what if there are multiple producers or consumers?

CMSC 330 45

More on the Condition Interface

• away(t, u) waits for time t and then gives up
– Result indicates whether woken by signal or timeout

• signal() wakes up only one waiting thread
– Tricky to use correctly

• Have all waiters be equal, handle exceptions correctly

– Highly recommended to just use signalAll()

interface Condition {
void await();
boolean await (long time, TimeUnit unit);
void signal();
void signalAll();

... }

CMSC 330 46

Await and SignalAll Gotcha’s

• await must be in a loop
– Don’t assume that when wait returns conditions are

met
• Avoid holding other locks when waiting

– await only gives up locks on the object you wait on

CMSC 330 47

Blocking Queues in Java 1.5

• Interface for producer/consumer pattern

• Two handy implementations
– LinkedBlockingQueue (FIFO, may be bounded)
– ArrayBlockingQueue (FIFO, bounded)
– (plus a couple more)

interface Queue<E> extends Collection<E> {
boolean offer(E x); /* produce */

/* waits for queue to have capacity */

E remove(); /* consume */
/* waits for queue to become non-empty */

... }

CMSC 330 48

Wait and NotifyAll (Java 1.4)

• Recall that in Java 1.4, use synchronize on
object to get associated lock

• Objects also have an associated wait set

object o
o’s lock

o’s wait set

9

CMSC 330 49

Wait and NotifyAll (cont’d)

• o.wait()
– Must hold lock associated with o
– Release that lock

• And no other locks
– Adds this thread to wait set for lock
– Blocks the thread

• o.notifyAll()
– Must hold lock associated with o
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

CMSC 330 50

public class ProducerConsumer {
private boolean valueReady = false;
private Object value;

synchronized void produce(Object o) {
while (valueReady) wait();
value = o; valueReady = true;
notifyAll();

}

synchronized Object consume() {
while (!valueReady) wait();
valueReady = false;
Object o = value;
notifyAll();
return o;

}
}

Producer/Consumer in Java 1.4

CMSC 330 51

Thread Cancellation

• Example scenarios: want to cancel thread
– Whose processing the user no longer needs (i.e., she

has hit the “cancel” button)
– That computes a partial result and other threads

have encountered errors, … etc.
• Java used to have Thread.kill()

– But it and Thread.stop() are deprecated
– Use Thread.interrupt() instead

CMSC 330 52

Thread.interrupt()
• Tries to wake up a thread

– Sets the thread’s interrupted flag
– Flag can be tested by calling

• interrupted() method
– Clears the interrupt flag

• isInterrupted() method
– Does not clear the interrupt flag

• Won’t disturb the thread if it is working
– Not asynchronous!

CMSC 330 53

Cancellation Example
public class CancellableReader extends Thread {

private FileInputStream dataFile;
public void run() {

try {
while (!Thread.interrupted()) {
try {

int c = dataFile.read();
if (c == -1) break;
else process(c);

} catch (IOException ex) { break; }
}

} finally { // cleanup here }
}

} What if the thread is blocked on a
lock or wait set, or sleeping when
interrupted?

This could acquire
locks, be on a wait
set, etc.

CMSC 330 54

InterruptedException

• Exception thrown if interrupted on certain ops
– wait, await, sleep, join, and lockInterruptibly
– Also thrown if call one of these with interrupt flag set

• Not thrown when blocked on 1.4 lock or I/O
class Object {

void wait() throws IE;
... }

interface Lock {
void lock();
void lockInterruptibly() throws IE;
... }

interface Condition {
void await() throws IE;
void signalAll();
... }

10

CMSC 330 55

Responses to Interruption

• Early Return
– Clean up and exit without producing errors
– May require rollback or recovery
– Callers can poll cancellation status to find out why an

action was not carried out
• Continuation (i.e., ignore interruption)

– When it is too dangerous to stop
– When partial actions cannot be backed out
– When it doesn’t matter

CMSC 330 56

• Re-throw InterruptedException
– When callers must be alerted on method return

• Throw a general failure exception
– When interruption is a reason method may fail

• In general
– Must reset invariants before cancelling
– E.g., close file descriptors, notify other waiters, etc.

Responses to Interruption (cont’d)

CMSC 330 57

Handling InterruptedException
synchronized (this) {

while (!ready) {

try { wait(); }

catch (InterruptedException e) {

// make shared state acceptable

notifyAll();

// cancel processing

return;

}

// do whatever

}

}

CMSC 330 58

Why No Thread.kill()?

• What if the thread is holding a lock when it is
killed? The system could
– Free the lock, but the data structure it is protecting

might be now inconsistent
– Keep the lock, but this could lead to deadlock

• A thread needs to perform its own cleanup
– Use InterruptedException and isInterrupted() to

discover when it should cancel

CMSC 330 59

Aspects of Synchronization

• Atomicity
– Locking to obtain mutual exclusion
– What we most often think about

• Visibility
– Ensuring that changes to object fields made in one

thread are seen in other threads
• Ordering

– Ensuring that you aren’t surprised by the order in
which statements are executed

CMSC 330 60

Quiz

• Can this result in i=0 and j=0?

11

CMSC 330 61

Doesn’t Seem Possible...

• But this can happen!

CMSC 330 62

How Can This Happen?

• Compiler can reorder statements
– Or keep values in registers

• Processor can reorder them
• On multi-processor, values not synchronized in

global memory

CMSC 330 63

When Are Actions Visible?

Must be the same lock

CMSC 330 64

Forcing Visibility of Actions

• All writes from thread that holds lock M are
visible to next thread that acquires lock M
– Must be the same lock

• Use synchronization to enforce visibility and
ordering
– As well as mutual exclusion

CMSC 330 65

Volatile Fields

• If you are going to access a shared field without
using synchronization
– It needs to be volatile

• If you don’t try to be too clever
– Declaring it volatile just works

• Example uses
– A one-writer/many-reader value

• Simple control flags:
– volatile boolean done = false;

– Keeping track of a “recent value” of something

CMSC 330 66

Misusing Volatile

• Incrementing a volatile field doesn’t work
– In general, writes to a volatile field that depend on the

previous value of that field don’t work
• A volatile reference to an object isn’t the same

as having the fields of that object be volatile
– No way to make elements of an array volatile

• Can’t keep two volatile fields in sync

• Don’t use for this course

12

CMSC 330 67

• Synchronize access to shared data
• Don’t hold multiple locks at a time

– Could cause deadlock
• Hold a lock for as little time as possible

– Reduces blocking waiting for locks
• While holding a lock, don’t call a method you

don’t understand
– E.g., a method provided by someone else, especially

if you can’t be sure what it locks
– Corollary: document which locks a method acquires

Guidelines for Programming w/Threads

