
1

CMSC 330: Organization of
Programming Languages

Threads
Classic Concurrency Problems

CMSC 330 2

The Dining Philosophers Problem

• Philosophers either
eat or think

• They must have two
forks to eat

• Can only use forks
on either side of
their plate

• Avoid deadlock and
starvation!

2

CMSC 330 3

Bad Dining Philosophers Solution 1

• Philosophers all
pick up the left fork
first

• Deadlock!
– all are holding the

left fork and waiting
for the right fork

CMSC 330 4

Bad Dining Philosophers Solution 2

• Philosophers all
pick up the left fork
first

• Philosophers put
down a fork after
waiting for 5
minutes, then wait 5
minutes before
picking it up again

• Starvation!

3

CMSC 330 5

Dining Philosophers Solution
• Number the philosophers
• Start by giving the fork to the philosopher with

lower number. Initially, all forks are dirty.
• When a philosopher wants both forks, he sends

a message to his neighbors
• When a philosopher with a fork receives a

message if his fork is clean, he keeps it,
otherwise he cleans it and gives it up.

• After a philosopher eats, his forks are dirty. If a
philosopher had requested his fork, he cleans it
and sends it.

you try!

CMSC 330 6

Dining Philosophers Example

Each philosopher
begins with the forks
shown.

All are dirty.

1

2

3

45

4

CMSC 330 7

Dining Philosophers Example

Philosopher 2 sends
a message to
philosopher 1 that he
wants his fork.

Their shared fork is
dirty, so philosopher 1
cleans it and sends it.

1

2

3

45

CMSC 330 8

Dining Philosophers Example

Philosopher 2 eats!

While he is eating
philosopher 3
requests their shared
fork.

Philosopher 2 is done
eating, so his forks
become dirty.

1

2

3

45

5

CMSC 330 9

Dining Philosophers Example

Philosopher 2 is done
eating, so he honors
philosopher 3’s
request and cleans
the fork and sends it.

Philosopher 3 eats!

1

2

3

45

CMSC 330 10

Philosophers Implementation Needs

• Wait until notified about something by another
philosopher
– stay hungry until you have two forks
– hold onto your fork until your neighbor needs it

• Send a message to a philosopher and have it
processed at a later time
– multiple philosophers can send messages to one
– when philosopher done eating he should process all

… and here’s another problem with these needs…

6

CMSC 330 11

Producer/Consumer Problem

• Suppose we are communicating with a shared
variable
– E.g., some kind of a fixed size buffer holding

messages

• One thread produces input to the buffer
• One thread consumes data from the buffer

• Rules:
– producer can’t add input to the buffer if it’s full
– consumer can’t take input from the buffer if it’s empty

CMSC 330 12

Producer / Consumer Idea

c b a

If the buffer is partially full, producer or consumer can run:

producer consumer

If the buffer is empty, only the producer can run:

producer

If the buffer is full, only the consumer can run:

e d c b a consumer

7

CMSC 330 13

Pseudocode Solution

• How can we solve this problem using one
thread for the producer and one for the
consumer?
– no deadlock
– no data races

you try!

CMSC 330 14

Conditions (Java 1.5)

• Condition created from a Lock
• await called with lock held

– Releases the lock (on the fork or buffer)
• But not any other locks held by this thread

– Adds this thread to wait set for lock
– Blocks the thread

when philosopher is waiting for a fork or
consumer is waiting for non empty buffer

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

8

CMSC 330 15

Conditions (Java 1.5)

• Condition created from a Lock

when philosopher is done eating
or when buffer is non empty:

• signallAll called with lock held
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

CMSC 330 16

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady){

ready.await(); }
buffer = o;
bufferReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady){

ready.await(); }
Object o = buffer;
bufferReady = false;
ready.signalAll();
lock.unlock();

}

Producer/Consumer Example

9

CMSC 330 17

Use This Design

• This is the right solution to the problem
– Tempting to try to just use locks directly
– Very hard to get right
– Problems with other approaches often very subtle

… here are a few bad solutions…

CMSC 330 18

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

void produce(object o) {
lock.lock();
while (valueReady);
value = o;
valueReady = true;
lock.unlock();

}

Object consume() {
lock.lock();
while (!valueReady);
Object o = value;
valueReady = false;
lock.unlock();

}

Broken Producer/Consumer Example

Threads wait with lock held – no way to make progress

10

CMSC 330 19

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

void produce(object o) {
while (valueReady);
lock.lock();
value = o;
valueReady = true;
lock.unlock();

}

Object consume() {
while (!valueReady);
lock.lock();
Object o = value;
valueReady = false;
lock.unlock();

}

Broken Producer/Consumer Example

valueReady accessed without a lock held – race condition

CMSC 330 20

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

void produce(object o) {
lock.lock();
if (valueReady)

ready.await();
value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
if (!valueReady)

ready.await();
Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

Broken Producer/Consumer Example

what if there are multiple producers or consumers?

11

CMSC 330 21

Why was it broken?

• Suppose you have 2 consumers, 1 producer
• Producer starts. valueReady set to true.
• Both consumers exit while loop and try to aquire

lock.
• One consumer gets the lock and consumes the

input.
• The next consumer is still able to get the lock.

– ERROR!

CMSC 330 22

More on the Condition Interface

• away(t, u) waits for time t and then gives up
– Result indicates whether woken by signal or timeout

• signal() wakes up only one waiting thread
– Tricky to use correctly

• Have all waiters be equal, handle exceptions correctly
– Highly recommended to just use signalAll()

interface Condition {
void await();
boolean await (long time, TimeUnit unit);
void signal();
void signalAll();

... }

12

CMSC 330 23

Await and SignalAll Gotcha’s

• await must be in a loop
– Don’t assume that when wait returns conditions are

met
• Avoid holding other locks when waiting

– await only gives up locks on the object you wait on

CMSC 330 24

Wait and NotifyAll (Java 1.4)

• Recall that in Java 1.4, use synchronize on
object to get associated lock

• Objects also have an associated wait set

object o
o’s lock

o’s wait set

13

CMSC 330 25

Wait and NotifyAll (cont’d)

• o.wait() (same as await)
– Must hold lock associated with o
– Release that lock

• And no other locks
– Adds this thread to wait set for lock
– Blocks the thread

• o.notifyAll() (same as signalAll)
– Must hold lock associated with o
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

CMSC 330 26

public class ProducerConsumer {
private boolean valueReady = false;
private Object value;

synchronized void produce(Object o) {
while (valueReady) wait();
value = o; valueReady = true;
notifyAll();

}

synchronized Object consume() {
while (!valueReady) wait();
valueReady = false;
Object o = value;
notifyAll();
return o;

}
}

Producer/Consumer in Java 1.4

synchronizes
on lock for this

waits using
lock and wait
set for this

14

CMSC 330 27

Aspects of Synchronization

• Atomicity
– Locking to obtain mutual exclusion
– What we most often think about

• Visibility
– Ensuring that changes to object fields made in one

thread are seen in other threads
• Ordering

– Ensuring that you aren’t surprised by the order in
which statements are executed

CMSC 330 28

Quiz

• Can this result in i=0 and j=0?

15

CMSC 330 29

Doesn’t Seem Possible...

• But this can happen!

CMSC 330 30

How Can This Happen?

• Compiler can reorder statements
– Or keep values in registers

• Processor can reorder them
• On multi-processor, values not synchronized in

global memory… so the data change may not
be visible to all threads yet

16

CMSC 330 31

When Are Actions Visible?

Must be the same lock

CMSC 330 32

Forcing Visibility of Actions

• All writes from thread that holds lock M are
visible to next thread that acquires lock M
– Must be the same lock

• Use synchronization to enforce visibility and
ordering
– As well as mutual exclusion

17

CMSC 330 33

Volatile Fields

• Fields which are visible immediately across all
threads

• If you are going to access a shared field without
using synchronization
– It needs to be volatile

• Example uses
– A one-writer/many-reader value

• Simple control flags:
– volatile boolean done = false;

– Keeping track of a “recent value” of something

CMSC 330 34

Misusing Volatile

• Incrementing a volatile field can cause a data
race (just as for any other field)

• A volatile reference to an object isn’t the same
as having the fields of that object be volatile
– No way to make elements of an array volatile

• Can’t keep two volatile fields in sync

• Don’t use for this course

18

CMSC 330 35

• Synchronize access to shared data
• Don’t hold multiple locks at a time

– Could cause deadlock
• Hold a lock for as little time as possible

– Reduces blocking waiting for locks
• While holding a lock, don’t call a method you

don’t understand
– E.g., a method provided by someone else, especially

if you can’t be sure what it locks
– Corollary: document which locks a method acquires

Guidelines for Programming w/Threads

CMSC 330 36

Thread Cancellation

• Example scenarios: want to cancel thread
– Whose processing the user no longer needs (i.e., she

has hit the “cancel” button)
– That computes a partial result and other threads

have encountered errors, … etc.
• Java used to have Thread.kill()

– But it and Thread.stop() are deprecated
– Use Thread.interrupt() instead

19

CMSC 330 37

Thread.interrupt()
• Tries to wake up a thread

– Sets the thread’s interrupted flag
– Flag can be tested by calling

• interrupted() method
– Clears the interrupt flag

• isInterrupted() method
– Does not clear the interrupt flag

• Won’t disturb the thread if it is working
– Not asynchronous!

CMSC 330 38

Cancellation Example
public class CancellableReader extends Thread {

private FileInputStream dataFile;
public void run() {

try {
while (!Thread.interrupted()) {

try {
int c = dataFile.read();
if (c == -1) break;
else process(c);

} catch (IOException ex) { break; }
}

} finally { // cleanup here }
}

} What if the thread is blocked on a
lock or wait set, or sleeping when
interrupted?

This could acquire
locks, be on a wait
set, etc.

20

CMSC 330 39

InterruptedException

• Exception thrown if interrupted on certain ops
– wait, await, sleep, join, and lockInterruptibly
– Also thrown if call one of these with interrupt flag set

• Not thrown when blocked on 1.4 lock or I/O
class Object {

void wait() throws IE;
... }

interface Lock {
void lock();
void lockInterruptibly() throws IE;
... }

interface Condition {
void await() throws IE;
void signalAll();
... }

CMSC 330 40

Responses to Interruption

• Early Return
– Clean up and exit without producing errors
– May require rollback or recovery
– Callers can poll cancellation status to find out why an

action was not carried out
• Continuation (i.e., ignore interruption)

– When it is too dangerous to stop
– When partial actions cannot be backed out
– When it doesn’t matter

21

CMSC 330 41

• Re-throw InterruptedException
– When callers must be alerted on method return

• Throw a general failure exception
– When interruption is a reason method may fail

• In general
– Must reset invariants before cancelling
– E.g., close file descriptors, notify other waiters, etc.

Responses to Interruption (cont’d)

CMSC 330 42

Handling InterruptedException
synchronized (this) {

while (!ready) {

try { wait(); }

catch (InterruptedException e) {

// make shared state acceptable

notifyAll();

// cancel processing

return;

}

// do whatever

}

}

22

CMSC 330 43

Why No Thread.kill()?

• What if the thread is holding a lock when it is
killed? The system could
– Free the lock, but the data structure it is protecting

might be now inconsistent
– Keep the lock, but this could lead to deadlock

• A thread needs to perform its own cleanup
– Use InterruptedException and isInterrupted() to

discover when it should cancel

