
1

CMSC 330: Organization of
Programming Languages

Threads
Classic Concurrency Problems

CMSC 330 2

The Dining Philosophers Problem

• Philosophers either
eat or think

• They must have two
forks to eat

• Can only use forks
on either side of
their plate

• Avoid deadlock and
starvation!

CMSC 330 3

Bad Dining Philosophers Solution 1

• Philosophers all
pick up the left fork
first

• Deadlock!
– all are holding the

left fork and waiting
for the right fork

CMSC 330 4

Bad Dining Philosophers Solution 2

• Philosophers all
pick up the left fork
first

• Philosophers put
down a fork after
waiting for 5
minutes, then wait 5
minutes before
picking it up again

• Starvation!

CMSC 330 5

Dining Philosophers Solution
• Number the philosophers
• Start by giving the fork to the philosopher with

lower number. Initially, all forks are dirty.
• When a philosopher wants both forks, he sends

a message to his neighbors
• When a philosopher with a fork receives a

message if his fork is clean, he keeps it,
otherwise he cleans it and gives it up.

• After a philosopher eats, his forks are dirty. If a
philosopher had requested his fork, he cleans it
and sends it.

you try!

CMSC 330 6

Dining Philosophers Example

Each philosopher
begins with the forks
shown.

All are dirty.

1

2

3

45

2

CMSC 330 7

Dining Philosophers Example

Philosopher 2 sends
a message to
philosopher 1 that he
wants his fork.

Their shared fork is
dirty, so philosopher 1
cleans it and sends it.

1

2

3

45

CMSC 330 8

Dining Philosophers Example

Philosopher 2 eats!

While he is eating
philosopher 3
requests their shared
fork.

Philosopher 2 is done
eating, so his forks
become dirty.

1

2

3

45

CMSC 330 9

Dining Philosophers Example

Philosopher 2 is done
eating, so he honors
philosopher 3’s
request and cleans
the fork and sends it.

Philosopher 3 eats!

1

2

3

45

CMSC 330 10

Philosophers Implementation Needs
• Wait until notified about something by another

philosopher
– stay hungry until you have two forks
– hold onto your fork until your neighbor needs it

• Send a message to a philosopher and have it
processed at a later time
– multiple philosophers can send messages to one
– when philosopher done eating he should process all

… and here’s another problem with these needs…

CMSC 330 11

Producer/Consumer Problem
• Suppose we are communicating with a shared

variable
– E.g., some kind of a fixed size buffer holding

messages

• One thread produces input to the buffer
• One thread consumes data from the buffer

• Rules:
– producer can’t add input to the buffer if it’s full
– consumer can’t take input from the buffer if it’s empty

CMSC 330 12

Producer / Consumer Idea

c b a

If the buffer is partially full, producer or consumer can run:

producer consumer

If the buffer is empty, only the producer can run:

producer

If the buffer is full, only the consumer can run:

e d c b a consumer

3

CMSC 330 13

Pseudocode Solution

• How can we solve this problem using one
thread for the producer and one for the
consumer?
– no deadlock
– no data races

you try!

CMSC 330 14

Conditions (Java 1.5)

• Condition created from a Lock
• await called with lock held

– Releases the lock (on the fork or buffer)
• But not any other locks held by this thread

– Adds this thread to wait set for lock
– Blocks the thread

when philosopher is waiting for a fork or
consumer is waiting for non empty buffer

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

CMSC 330 15

Conditions (Java 1.5)

• Condition created from a Lock

when philosopher is done eating
or when buffer is non empty:

• signallAll called with lock held
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();
void signalAll(); ... }

Condition

wait set

...

CMSC 330 16

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady){

ready.await(); }
buffer = o;
bufferReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady){

ready.await(); }
Object o = buffer;
bufferReady = false;
ready.signalAll();
lock.unlock();

}

Producer/Consumer Example

CMSC 330 17

Use This Design

• This is the right solution to the problem
– Tempting to try to just use locks directly
– Very hard to get right
– Problems with other approaches often very subtle

… here are a few bad solutions…

CMSC 330 18

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

void produce(object o) {
lock.lock();
while (valueReady);
value = o;
valueReady = true;
lock.unlock();

}

Object consume() {
lock.lock();
while (!valueReady);
Object o = value;
valueReady = false;
lock.unlock();

}

Broken Producer/Consumer Example

Threads wait with lock held – no way to make progress

4

CMSC 330 19

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

void produce(object o) {
while (valueReady);
lock.lock();
value = o;
valueReady = true;
lock.unlock();

}

Object consume() {
while (!valueReady);
lock.lock();
Object o = value;
valueReady = false;
lock.unlock();

}

Broken Producer/Consumer Example

valueReady accessed without a lock held – race condition

CMSC 330 20

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

void produce(object o) {
lock.lock();
if (valueReady)

ready.await();
value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
if (!valueReady)

ready.await();
Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

Broken Producer/Consumer Example

what if there are multiple producers or consumers?

CMSC 330 21

Why was it broken?

• Suppose you have 2 consumers, 1 producer
• Producer starts. valueReady set to true.
• Both consumers exit while loop and try to aquire

lock.
• One consumer gets the lock and consumes the

input.
• The next consumer is still able to get the lock.

– ERROR!

CMSC 330 22

More on the Condition Interface

• away(t, u) waits for time t and then gives up
– Result indicates whether woken by signal or timeout

• signal() wakes up only one waiting thread
– Tricky to use correctly

• Have all waiters be equal, handle exceptions correctly
– Highly recommended to just use signalAll()

interface Condition {
void await();
boolean await (long time, TimeUnit unit);
void signal();
void signalAll();

... }

CMSC 330 23

Await and SignalAll Gotcha’s

• await must be in a loop
– Don’t assume that when wait returns conditions are

met
• Avoid holding other locks when waiting

– await only gives up locks on the object you wait on

CMSC 330 24

Wait and NotifyAll (Java 1.4)

• Recall that in Java 1.4, use synchronize on
object to get associated lock

• Objects also have an associated wait set

object o
o’s lock

o’s wait set

5

CMSC 330 25

Wait and NotifyAll (cont’d)

• o.wait() (same as await)
– Must hold lock associated with o
– Release that lock

• And no other locks
– Adds this thread to wait set for lock
– Blocks the thread

• o.notifyAll() (same as signalAll)
– Must hold lock associated with o
– Resumes all threads on lock’s wait set
– Those threads must reacquire lock before continuing

• (This is part of the function; you don’t need to do it explicitly)

CMSC 330 26

public class ProducerConsumer {
private boolean valueReady = false;
private Object value;

synchronized void produce(Object o) {
while (valueReady) wait();
value = o; valueReady = true;
notifyAll();

}

synchronized Object consume() {
while (!valueReady) wait();
valueReady = false;
Object o = value;
notifyAll();
return o;

}
}

Producer/Consumer in Java 1.4

synchronizes
on lock for this

waits using
lock and wait
set for this

CMSC 330 27

Aspects of Synchronization

• Atomicity
– Locking to obtain mutual exclusion
– What we most often think about

• Visibility
– Ensuring that changes to object fields made in one

thread are seen in other threads
• Ordering

– Ensuring that you aren’t surprised by the order in
which statements are executed

CMSC 330 28

Quiz

• Can this result in i=0 and j=0?

CMSC 330 29

Doesn’t Seem Possible...

• But this can happen!

CMSC 330 30

How Can This Happen?

• Compiler can reorder statements
– Or keep values in registers

• Processor can reorder them
• On multi-processor, values not synchronized in

global memory… so the data change may not
be visible to all threads yet

6

CMSC 330 31

When Are Actions Visible?

Must be the same lock

CMSC 330 32

Forcing Visibility of Actions

• All writes from thread that holds lock M are
visible to next thread that acquires lock M
– Must be the same lock

• Use synchronization to enforce visibility and
ordering
– As well as mutual exclusion

CMSC 330 33

Volatile Fields

• Fields which are visible immediately across all
threads

• If you are going to access a shared field without
using synchronization
– It needs to be volatile

• Example uses
– A one-writer/many-reader value

• Simple control flags:
– volatile boolean done = false;

– Keeping track of a “recent value” of something

CMSC 330 34

Misusing Volatile

• Incrementing a volatile field can cause a data
race (just as for any other field)

• A volatile reference to an object isn’t the same
as having the fields of that object be volatile
– No way to make elements of an array volatile

• Can’t keep two volatile fields in sync

• Don’t use for this course

CMSC 330 35

• Synchronize access to shared data
• Don’t hold multiple locks at a time

– Could cause deadlock
• Hold a lock for as little time as possible

– Reduces blocking waiting for locks
• While holding a lock, don’t call a method you

don’t understand
– E.g., a method provided by someone else, especially

if you can’t be sure what it locks
– Corollary: document which locks a method acquires

Guidelines for Programming w/Threads

CMSC 330 36

Thread Cancellation

• Example scenarios: want to cancel thread
– Whose processing the user no longer needs (i.e., she

has hit the “cancel” button)
– That computes a partial result and other threads

have encountered errors, … etc.
• Java used to have Thread.kill()

– But it and Thread.stop() are deprecated
– Use Thread.interrupt() instead

7

CMSC 330 37

Thread.interrupt()
• Tries to wake up a thread

– Sets the thread’s interrupted flag
– Flag can be tested by calling

• interrupted() method
– Clears the interrupt flag

• isInterrupted() method
– Does not clear the interrupt flag

• Won’t disturb the thread if it is working
– Not asynchronous!

CMSC 330 38

Cancellation Example
public class CancellableReader extends Thread {

private FileInputStream dataFile;
public void run() {

try {
while (!Thread.interrupted()) {
try {

int c = dataFile.read();
if (c == -1) break;
else process(c);

} catch (IOException ex) { break; }
}

} finally { // cleanup here }
}

} What if the thread is blocked on a
lock or wait set, or sleeping when
interrupted?

This could acquire
locks, be on a wait
set, etc.

CMSC 330 39

InterruptedException

• Exception thrown if interrupted on certain ops
– wait, await, sleep, join, and lockInterruptibly
– Also thrown if call one of these with interrupt flag set

• Not thrown when blocked on 1.4 lock or I/O
class Object {

void wait() throws IE;
... }

interface Lock {
void lock();
void lockInterruptibly() throws IE;
... }

interface Condition {
void await() throws IE;
void signalAll();
... }

CMSC 330 40

Responses to Interruption

• Early Return
– Clean up and exit without producing errors
– May require rollback or recovery
– Callers can poll cancellation status to find out why an

action was not carried out
• Continuation (i.e., ignore interruption)

– When it is too dangerous to stop
– When partial actions cannot be backed out
– When it doesn’t matter

CMSC 330 41

• Re-throw InterruptedException
– When callers must be alerted on method return

• Throw a general failure exception
– When interruption is a reason method may fail

• In general
– Must reset invariants before cancelling
– E.g., close file descriptors, notify other waiters, etc.

Responses to Interruption (cont’d)

CMSC 330 42

Handling InterruptedException
synchronized (this) {

while (!ready) {

try { wait(); }

catch (InterruptedException e) {

// make shared state acceptable

notifyAll();

// cancel processing

return;

}

// do whatever

}

}

8

CMSC 330 43

Why No Thread.kill()?

• What if the thread is holding a lock when it is
killed? The system could
– Free the lock, but the data structure it is protecting

might be now inconsistent
– Keep the lock, but this could lead to deadlock

• A thread needs to perform its own cleanup
– Use InterruptedException and isInterrupted() to

discover when it should cancel

