
1

CMSC 330:  Organization of 
Programming Languages

Java and Java Generics

CMSC 330 2

Java

• Developed in 1995 by Sun Microsystems
– Started off as Oak, a language aimed at software for 

consumer electronics
– Then the web came along...

• Java incorporated into web browsers
– Java source code compiled into Java byte code
– Executed (interpreted) on Java Virtual Machine

• Portability to different platforms
• Safety and security much easier, because code is not 

directly executing on hardware

• These days, Java used for a lot of purposes
– Server side programming, general platform, etc.

CMSC 330 3

Java Versions

• Java has evolved over the years
– Virtual machine quite stable, but source language 

has been getting new features

• Will use the latest version of Java for this class
– If you’ve got an older version, you might want to 

upgrade

CMSC 330 4

Subtyping

• Both inheritance and interfaces allow one class 
to be used where another is specified
– This is really the same idea:  subtyping

• We say that A is a subtype of B if
– A extends B or a subtype of B, or
– A implements B or a subtype of B

CMSC 330 5

Liskov Substitution Principle
If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is substituted for
o2 then S is a subtype of T.

– I.e, if anyone expecting a T can be given an S, then 
S is a subtype of T.

– Does our definition of subtyping in terms of extends 
and implements obey this principle?

CMSC 330 6

Polymorphism

• Subtyping is a kind of polymorphism
– Sometimes called subtype polymorphism
– Allows method to accept objects of many types

• We saw parametric polymorphism in OCaml
– It’s polymorphism because polymorphic functions can 

be applied to many different types

• Ad-hoc polymorphism is overloading
– Operator overloading in C++
– Method overloading in Java



2

CMSC 330 7

Polymorphism Using Object
class Stack {

class Entry {
Object elt; Entry next;
Entry(Object i, Entry n) { elt = i; next = n; }

}
Entry theStack;
void push(Object i) {
theStack = new Entry(i, theStack);

}
Object pop() throws EmptyStackException {
if (theStack == null)
throw new EmptyStackException();

else {
Object i = theStack.elt;
theStack = theStack.next;
return i;

}}}

CMSC 330 8

Stack Client

Stack is = new Stack();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = (Integer) is.pop();

• Now Stacks are reusable
– push() works the same
– But now pop() returns an Object

• Have to downcast back to Integer
• Not checked until run-time

CMSC 330 9

General Problem

• When we move from an X container to an 
Object container
– Methods that take X’s as input parameters are OK

• If you’re allowed to pass Object in, you can pass any X in

– Methods that return X’s as results require downcasts
• You only get Objects out, which you need to cast down to X

• This is a general feature of subtype
polymorphism

CMSC 330 10

Parametric Polymorphism (for Classes)

• In Java 1.5 we can parameterize the Stack 
class by its element type

• Syntax:
– Class declaration: class A<T> { ... }

• A is the class name, as before
• T is a type variable, can be used in body of class (...)

– Client usage declaration: A<Integer> x;
• We instantiate A with the Integer type

CMSC 330 11

class Stack<ElementType> {
class Entry {
ElementType elt; Entry next;
Entry(ElementType i, Entry n) { elt = i; next = n; }

}
Entry theStack;
void push(ElementType i) {
theStack = new Entry(i, theStack);

}
ElementType pop() throws EmptyStackException {
if (theStack == null)
throw new EmptyStackException();

else {
ElementType i = theStack.elt;
theStack = theStack.next;
return i;

}}}

Parametric Polymorphism for Stack

CMSC 330 12

Stack<Element> Client

Stack<Integer> is = new Stack<Integer>();
Integer i;
is.push(new Integer(3));
is.push(new Integer(4));
i = is.pop();

• No downcasts
• Type-checked at compile time
• No need to duplicate Stack code for every usage

– line i = is.pop(); can stay the same even if the type of is isn’t an 
integer in every path through the program



3

CMSC 330 13

Parametric Polymorphism for Methods
• String is a subtype of Object

1. static Object id(Object x) { return x; }
2. static Object id(String x) { return x; }
3. static String  id(Object x) { return x; }
4. static String  id(String x) { return x; }

• Can’t pass an Object to 2 or 4
• 3 doesn’t type check
• Can pass a String to 1 but you get an Object back

CMSC 330 14

Parametric Polymorphism, Again

• But id() doesn’t care about the type of x
– It works for any type

• So parameterize the static method:
static <T> T id(T x) { return x; }
Integer i = id(new Integer(3));

– Notice no need to instantiate id; compiler figures out 
the correct type at usage

– The formal parameter has type T, the actual 
parameter has type Integer

CMSC 330 15

Standard Library, and Java 1.5

• Part of Java 1.5 (called “generics”)
– Comes with replacement for java.util.*

• class LinkedList<A> { ...}
• class HashMap<A, B> { ... }
• interface Collection<A> { ... }

– Excellent tutorial listed on references page

• But they didn’t change the JVM to add generics
– How was that done?

CMSC 330 16

Translation via Erasure

• Replace uses of type variables with Object
– class A<T> { ...T x;... } becomes
– class A { ...Object x;... }

• Add downcasts wherever necessary
– Integer x = A<Integer>.get(); becomes
– Integer x = (Integer) (A.get());

• So why did we bother with generics if they’re 
just going to be removed?
– Because the compiler still did type checking for us
– We know that those casts will not fail at run time

CMSC 330 17

Limitations of Translation
• Some type information not available at run-time

– Recall type variables T are rewritten to Object

• Disallowed, assuming T is type variable:  
– new T() would translate to new Object() (error)
– new T[n] would translate to new Object[n] (warning)
– Some casts/instanceofs that use T

• (Only ones the compiler can figure out are allowed)

• Also produces some oddities
– LinkedList<Integer>.class == LinkedList<String>.class

• (These are uses of reflection to get the class object)

CMSC 330 18

Using with Legacy Code

• Translation via type erasure
– class A <T> becomes class A

• Thus class A is available as a “raw type”
– class A<T> { ... }
– class B { A x; }   // use A as raw type

• Sometimes useful with legacy code, but...
– Dangerous feature to use, plus unsafe
– Relies on implementation of generics, not semantics



4

CMSC 330 19

Subtyping and Arrays

• Java has one funny subtyping feature:
– If S is a subtype of T, then
– S[] is a subtype of T[]

• Lets us write methods that take arbitrary arrays
public static void reverseArray(Object [] A) {

for(int i=0, j=A.length-1; i<j; i++,j--) {
Object tmp = A[i];
A[i] = A[j];
A[j] = tmp;

}
}

CMSC 330 20

Problem with Subtyping Arrays

• Program compiles without warning
• Java must generate run-time check at (1) to prevent (2)

– Type written to array must be subtype of array contents

public class A { ... }
public class B extends A { void newMethod(); }
...

void foo(void) {
B[] bs = new B[3];
A[] as;

as = bs; // Since B[] subtype of A[]
as[0] = new A(); // (1)
bs[0].newMethod(); // (2) Fails since not type B

}

CMSC 330 21

Subtyping for Generics

• Is Stack<Integer> a subtype of Stack<Object>?
– We could have the same problem as with arrays
– Thus Java forbids this subtyping

• Now consider the following method:

– Not allowed to call count(x) where x has type 
Stack<Integer>

int count(Collection<Object> c) {

int j = 0;

for (Iterator<Object> i = c.iterator(); i.hasNext(); ) {

Object e = i.next(); j++;

}

return j;

}

CMSC 330 22

<T> int count(Collection<T> c) {

int j = 0;

for (Iterator<T> i = c.iterator(); i.hasNext(); ) {

T e = i.next(); j++;

}

return j;}

Solution I: Use Polymorphic Methods

• But requires a “dummy” type variable that isn’t 
really used for anything

CMSC 330 23

Solution II: Wildcards

• Use ? as the type variable
– Collection<?> is “Collection of unknown”

• Why is this safe?
– Using ? is a contract that you’ll never rely on having a 

particular parameter type
– All objects subtype of Object, so assignment to e ok

int count(Collection<?> c) {

int j = 0;

for (Iterator<?> i = c.iterator(); i.hasNext(); ) {

Object e = i.next(); j++;

}

return j; }

CMSC 330 24

Legal Wildcard Usage

• Reasonable question: 
– Stack<Integer> is not a subtype of Stack<Object>
– Why is Stack<Integer> a subtype of Stack<?>?

• Answer:
– Wildcards permit “reading” but not “writing”



5

CMSC 330 25

Example: Can read but cannot write
int count(Collection<?> c) {

int j = 0;

for (Iterator<?> i = c.iterator(); i.hasNext(); ) {

Object e = i.next();

c.add(e); // fails: Object is not ?

j++;

}

return j; }

CMSC 330 26

For Loops

• Java 1.5 has a more convenient syntax for this 
standard for loop

– This loop will get the standard iterate and set e to 
each element of the list, in order

int count(Collection<?> c) {

int j = 0;

for (Object e : c)

j++;

return j;

}

CMSC 330 27

More on Generic Classes

• Suppose we have classes Circle, Square, and 
Rectangle, all subtypes of Shape

– Can we pass this method a Collection<Square>?
• No, not a subtype of Collection<Shape>

– How about the following?

void drawAll(Collection<Shape> c) {

for (Shape s : c)

s.draw();

}

void drawAll(Collection<?> c) {

for (Shape s : c)

s.draw();

}

// not allowed,

assumes ? is

Shape

CMSC 330 28

Bounded Wildcards

• We want drawAll to take a Collection of anything 
that is a subtype of shape
– this includes Shape itself

– This is a bounded wildcard
– We can pass Collection<Circle>
– We can safely treat e as a Shape

void drawAll(Collection<? extends Shape> c) {

for (Shape s : c)

s.draw();

}

CMSC 330 29

Upper Bounded Wild Cards

• ? extends Shape actually gives an upper bound
on the type accepted

• Shape is the upper bound of the wildcard

Shape

Circle

Rectangle

Square

CMSC 330 30

Bounded Wildcards (cont’d)

• Should the following be allowed?

– No, because c might be a Collection of something 
that is not compatible with Circle

– This code is forbidden at compile time

void foo(Collection<? extends Shape> c) {

c.add(new Circle());

}



6

CMSC 330 31

Lower Bounded Wildcards

• Dual of the upper bounded wildcards
• ? super Rectangle denotes a type that is a 

supertype of Rectangle
– T is included

• ? super Rectangle gives a lower bound on the 
type accepted Shape

Circle

Rectangle

Square
CMSC 330 32

Lower Bounded Wildcards (cont’d)

• But the following is allowed:

– Because c is a Collection of something that is always 
compatible with Circle

void foo(Collection<? super Circle> c) {

c.add(new Circle());

c.add(new Shape()); // fails

}

CMSC 330 33

Bounded Type Variables

• You can also add bounds to regular type vars

– This method can take a List of any subclass of Shape
• This addresses some of the reason that we decided to 

introduce wild cards 
• Once again, this only works for methods

<T extends Shape> T getAndDrawShape(List<T> c) {

c.get(1).draw();

return c.get(2);

}

CMSC 330 34

public interface Comparable<T> {
int compareTo(T o);

}
// e.g., Boolean implements Comparable<Boolean>

public static <T extends Comparable<? super T>>
void sort(List<T> list) {
Object a[] = list.toArray();
Arrays.sort(a);
ListIterator<T> i = list.listIterator();
for(int j=0; j<a.length; j++) {

i.nextIndex();
i.set((T)a[j]);

}
}

A more realistic example

• I’m modifying the list via the Iterator. Why is this OK?


