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CMSC 330:  Organization of 
Programming Languages

Garbage Collection

CMSC 330 2

Memory attributes
• Memory to store data in programming languages has 

several attributes:
– Persistence (or lifetime) – How long the memory 

exists
– Allocation – When the memory is available for use
– Recovery – When the system recovers the memory 

for reuse
• Most programming languages are concerned with some 

subset of the following 4 memory classes:
– Fixed (or static) memory
– Automatic memory
– Programmer allocated memory
– Persistent memory
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Memory classes

• Static memory – Usually a fixed address in 
memory
– Persistence – Lifetime of execution of program
– Allocation – By compiler for entire execution
– Recovery – By system when program terminates

• Automatic memory – Usually on a stack
– Persistence – Lifetime of method using that data
– Allocation – When method is invoked
– Recovery – When method terminates
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Memory classes
• Allocated memory – Usually memory on a heap

– Persistence – As long as memory is needed
– Allocation – Explicitly by programmer
– Recovery – Either by programmer or automatically (when 

possible and depends upon language)
• Persistent memory – Usually the file system

– Persistence – Multiple execution of a program (e.g., files or 
databases)

– Allocation – By program or user, often outside of program 
execution

– Recovery – When data no longer needed
– This form of memory usually outside of programming 

language course and part of database area (e.g., CMSC 424)
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Memory Management in C

• Local variables live on the stack
– Allocated at function invocation time
– Deallocated when function returns
– Storage space reused after function returns

• Space on the heap allocated with malloc()
– Must be explicitly freed with free()
– This is called explicit or manual memory 

management
• Deletions must be done by the user

CMSC 330 6

Memory Management Mistakes

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();

free(x);

*x = 5; /* oops! */

}

• May try to free something twice
{ int *x = ...malloc(); free(x); free(x); }

• This may corrupt the memory management data structures
– E.g., the memory allocator maintains a free list of space on 

the heap that’s available
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Ways to Avoid Mistakes

• Don’t allocate memory on the heap
– Often impractical
– Leads to confusing code

• Never free memory
– OS will reclaim process’s memory anyway at exit
– Memory is cheap; who cares about a little leak?
– LISP model – System halts program and reclaims 

unused memory when there is no more available
• Use a garbage collector

– E.g., conservative Boehm-Weiser collector for C
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Memory Management in Ruby

• Local variables live on the stack
– Storage reclaimed when method returns

• Objects live on the heap
– Created with calls to Class.new

• Objects never explicitly freed
– Ruby uses automatic memory management

• Uses a garbage collector to reclaim 
memory
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Memory Management in OCaml

• Local variables live on the stack
• Tuples, closures, and constructed types live on 

the heap
– let x = (3, 4) (* heap-allocated *)
– let f x y = x + y in f 3

(* result heap-allocated *)
– type ‘a t = None | Some of ‘a

– None (* not on the heap–just a primitive *)
– Some 37 (* heap-allocated *)

• Garbage collection reclaims memory
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Memory Management in Java

• Local variables live on the stack
– Allocated at method invocation time
– Deallocated when method returns

• Other data lives on the heap
– Memory is allocated with new
– But never explicitly deallocated

• Java uses automatic memory management
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Memory  Problem: Fragmentation
allocate(a);
allocate(x);
allocate(y);
free(a);
allocate(z);
free(y);
allocate(b);

⇒ No contiguous space for b
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Garbage collection goal
• Process to reclaim memory. (Also solve 

Fragmentation problem.)

• Algorithm: You can do garbage collection and memory 
compaction if you know where every pointer is in a 
program. If you move the allocated storage, simply 
change the pointer to it.

• This is true in LISP, OCAML, Java, Prolog 
• Not true in C, C++, Pascal, Ada
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Garbage Collection (GC)

• At any point during execution, can divide the 
objects in the heap into two classes:
– Live objects will be used later
– Dead objects will never be used again

• They are garbage
• Idea:  Can reuse memory from dead objects
• Goals:  Reduce memory leaks, and make 

dangling pointers impossible
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Many GC Techniques

• In most languages we can’t know for sure which 
objects are really live or dead
– Undecidable, like solving the halting problem

• Thus we need to make an approximation
– OK if we decide something is live when it’s 

not
– But we’d better not deallocate an object that 

will be used later on
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Reachability
• An object is reachable if it can be accessed by 

chasing pointers from live data
• Safe policy: delete unreachable objects

– An unreachable object can never be 
accessed again by the program
• The object is definitely garbage

– A reachable object may be accessed in the 
future 
• The object could be garbage but will be 

retained anyway
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Roots

• At a given program point, we define liveness as 
being data reachable from the root set:
– Global variables
– Local variables of all live method activations 

(i.e., the stack)
• At the machine level, we also consider the 

register set (usually stores local or global 
variables)

• Next: techniques for pointer chasing
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Reference Counting

• Old technique (1960)

• Each object has count of number of pointers to 
it from other objects and from the stack
– When count reaches 0, object can be deallocated

• Counts tracked by either compiler or manually

• To find pointers, need to know layout of objects
– In particular, need to distinguish pointers from ints

• Method works mostly for reclaiming memory; 
doesn’t handle fragmentation problem
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Reference Counting Example
stack
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Reference Counting Example
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Reference Counting Example
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Reference Counting Example
stack
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Reference Counting Example
stack
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Reference Counting Example
stack
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Reference Counting Example
stack

1
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Tradeoffs
• Advantage:  incremental technique

– Generally small, constant amount of work per memory write
– With more effort, can even bound running time

• Disadvantages:
– Cascading decrements can be expensive
– Can’t collect cycles, since counts never go to 0
– Also requires extra storage for reference counts
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Mark and Sweep GC

• Idea:  Only objects reachable from stack could 
possibly be live
– Every so often, stop the world and do GC:

• Mark all objects on stack as live
• Until no more reachable objects,

– Mark object reachable from live object as live
• Deallocate any non-reachable objects

• This is a tracing garbage collector
• Does not handle fragmentation problem
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Mark and Sweep Example
stack
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Mark and Sweep Example
stack
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Mark and Sweep Example
stack
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Mark and Sweep Example
stack
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Mark and Sweep Example
stack
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Mark and Sweep Example
stack
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Mark and Sweep Example
stack
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Tradeoffs with Mark and Sweep
• Pros:

– No problem with cycles
– Memory writes have no cost

• Cons:
– Fragmentation

• Available space broken up into many small pieces
– Thus many mark-and-sweep systems may also have a 

compaction phase (like defragmenting your disk)
– Cost proportional to heap size

• Sweep phase needs to traverse whole heap – it touches 
dead memory to put it back on to the free list

– Not appropriate for real-time applications
• You wouldn’t like your auto’s braking system to stop working for a 

GC while you are trying to stop at a busy intersection
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Stop and Copy GC

• Like mark and sweep, but only touches live 
objects
– Divide heap into two equal parts (semispaces)
– Only one semispace active at a time
– At GC time, flip semispaces

• Trace the live data starting from the stack
• Copy live data into other semispace
• Declare everything in current semispace dead; switch to 

other semispace
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Stop and Copy Example
stack
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Stop and Copy Example
stack
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Stop and Copy Example
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Stop and Copy Example
stack
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Stop and Copy Tradeoffs

• Pros:
– Only touches live data
– No fragmentation; automatically compacts

• Will probably increase locality
• Cons:

– Requires twice the memory space
– Like mark and sweep, need to “stop the 

world”
• Program must stop running to let garbage 

collector move around data in the heap
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The Generational Principle

Object lifetime increases ⇒
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“Young
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die quickly;
old objects
keep living”
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Generational Collection
• Long lived objects get copied over and over

– Idea:  Have more than one semispace, divide 
into generations
• Older generations collected less often
• Objects that survive many collections get 

pushed into older generations
• Need to track pointers from old to young 

generations to use as roots for young 
generation collection

• One popular setup
– Generational stop and copy
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More Issues in GC (cont’d)

• Stopping the world is a big draw-back
– Unpredictable performance

• Bad for real-time systems
– Need to stop all threads

• Without a much more sophisticated GC

• One-size fits all solution
– Sometimes, GC just gets in the way
– But correctness comes first
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What Does GC Mean to You?

• Ideally, nothing
– It should make your life easier
– And shouldn’t affect performance too much

• May even give better performance than 
you’d have with explicit deallocation

• If GC becomes a problem, hard to solve
– You can set parameters of the GC
– You can modify your program
– But don’t optimize too early!
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Dealing with GC Problems
• Best idea:  Measure where your problems are coming 

from
• For HotSpot VM, try running with 

– -verbose:gc
– Prints out messages with statistics when a GC 

occurs

• [GC 325407K->83000K(776768K), 0.2300771 secs]
• [GC 325816K->83372K(776768K), 0.2454258 secs]
• [Full GC 267628K->83769K(776768K), 1.8479984 secs]
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GC Parameters

• Can resize the generations
– How much to use initially, plus max growth

• Change the total heap size
– In terms of an absolute measure
– In terms of ratio of free/allocated data

• For server applications, two common tweaks:
– Make the total heap as big as possible
– Make the young generation half the total heap
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Increasing Memory Performance

• Don’t allocate as much memory
– Less work for your application
– Less work for the garbage collector
– Should improve performance

• (Why only “should”?)
• Don’t hold on to references

– Null out pointers in data structures
– Or use weak references

CMSC 330 48

Find the Memory Leak
class Stack {

private Object[] stack;
private int index;
public Stack(int size) {

stack = new Object[size];
}
public void push(Object o) {

stack[index++] = o;
}
public void pop() {

return stack[index--];
}

}
– From Haggar, Garbage Collection and the Java Platform Memory Model

Answer: pop() leaves item on stack array; storage not reclaimed.
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Bad Ideas (Usually)

• Calling System.gc()
– This is probably a bad idea
– You have no idea what the GC will do
– And it will take a while

• Managing memory yourself
– Object pools, free lists, object recycling
– GC’s have been heavily tuned to be efficient


