
1

CMSC 330:  Organization of 
Programming Languages

Garbage Collection

CMSC 330 2

Memory attributes
• Memory to store data in programming languages has 

several attributes:
– Persistence (or lifetime) – How long the memory 

exists
– Allocation – When the memory is available for use
– Recovery – When the system recovers the memory 

for reuse
• Most programming languages are concerned with some 

subset of the following 4 memory classes:
– Fixed (or static) memory
– Automatic memory
– Programmer allocated memory
– Persistent memory



2

CMSC 330 3

Memory classes

• Static memory – Usually a fixed address in 
memory
– Persistence – Lifetime of execution of program
– Allocation – By compiler for entire execution
– Recovery – By system when program terminates

• Automatic memory – Usually on a stack
– Persistence – Lifetime of method using that data
– Allocation – When method is invoked
– Recovery – When method terminates

CMSC 330 4

Memory classes
• Allocated memory – Usually memory on a heap

– Persistence – As long as memory is needed
– Allocation – Explicitly by programmer
– Recovery – Either by programmer or automatically (when 

possible and depends upon language)
• Persistent memory – Usually the file system

– Persistence – Multiple execution of a program (e.g., files or 
databases)

– Allocation – By program or user, often outside of program 
execution

– Recovery – When data no longer needed
– This form of memory usually outside of programming 

language course and part of database area (e.g., CMSC 424)



3

CMSC 330 5

Memory Management in C

• Local variables live on the stack
– Allocated at function invocation time
– Deallocated when function returns
– Storage space reused after function returns

• Space on the heap allocated with malloc()
– Must be explicitly freed with free()
– This is called explicit or manual memory 

management
• Deletions must be done by the user

CMSC 330 6

Memory Management Mistakes

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();

free(x);

*x = 5; /* oops! */

}

• May try to free something twice
{ int *x = ...malloc(); free(x); free(x); }

• This may corrupt the memory management data structures
– E.g., the memory allocator maintains a free list of space on 

the heap that’s available



4

CMSC 330 7

Ways to Avoid Mistakes

• Don’t allocate memory on the heap
– Often impractical
– Leads to confusing code

• Never free memory
– OS will reclaim process’s memory anyway at exit
– Memory is cheap; who cares about a little leak?
– LISP model – System halts program and reclaims 

unused memory when there is no more available
• Use a garbage collector

– E.g., conservative Boehm-Weiser collector for C

CMSC 330 8

Memory Management in Ruby

• Local variables live on the stack
– Storage reclaimed when method returns

• Objects live on the heap
– Created with calls to Class.new

• Objects never explicitly freed
– Ruby uses automatic memory management

• Uses a garbage collector to reclaim 
memory



5

CMSC 330 9

Memory Management in OCaml

• Local variables live on the stack
• Tuples, closures, and constructed types live on 

the heap
– let x = (3, 4) (* heap-allocated *)
– let f x y = x + y in f 3

(* result heap-allocated *)
– type ‘a t = None | Some of ‘a

– None (* not on the heap–just a primitive *)
– Some 37 (* heap-allocated *)

• Garbage collection reclaims memory

CMSC 330 10

Memory Management in Java

• Local variables live on the stack
– Allocated at method invocation time
– Deallocated when method returns

• Other data lives on the heap
– Memory is allocated with new
– But never explicitly deallocated

• Java uses automatic memory management



6

CMSC 330 11

Memory  Problem: Fragmentation
allocate(a);
allocate(x);
allocate(y);
free(a);
allocate(z);
free(y);
allocate(b);

⇒ No contiguous space for b

CMSC 330 12

Garbage collection goal
• Process to reclaim memory. (Also solve 

Fragmentation problem.)

• Algorithm: You can do garbage collection and memory 
compaction if you know where every pointer is in a 
program. If you move the allocated storage, simply 
change the pointer to it.

• This is true in LISP, OCAML, Java, Prolog 
• Not true in C, C++, Pascal, Ada



7

CMSC 330 13

Garbage Collection (GC)

• At any point during execution, can divide the 
objects in the heap into two classes:
– Live objects will be used later
– Dead objects will never be used again

• They are garbage
• Idea:  Can reuse memory from dead objects
• Goals:  Reduce memory leaks, and make 

dangling pointers impossible

CMSC 330 14

Many GC Techniques

• In most languages we can’t know for sure which 
objects are really live or dead
– Undecidable, like solving the halting problem

• Thus we need to make an approximation
– OK if we decide something is live when it’s 

not
– But we’d better not deallocate an object that 

will be used later on



8

CMSC 330 15

Reachability
• An object is reachable if it can be accessed by 

chasing pointers from live data
• Safe policy: delete unreachable objects

– An unreachable object can never be 
accessed again by the program
• The object is definitely garbage

– A reachable object may be accessed in the 
future 
• The object could be garbage but will be 

retained anyway

CMSC 330 16

Roots

• At a given program point, we define liveness as 
being data reachable from the root set:
– Global variables
– Local variables of all live method activations 

(i.e., the stack)
• At the machine level, we also consider the 

register set (usually stores local or global 
variables)

• Next: techniques for pointer chasing



9

CMSC 330 17

Reference Counting

• Old technique (1960)

• Each object has count of number of pointers to 
it from other objects and from the stack
– When count reaches 0, object can be deallocated

• Counts tracked by either compiler or manually

• To find pointers, need to know layout of objects
– In particular, need to distinguish pointers from ints

• Method works mostly for reclaiming memory; 
doesn’t handle fragmentation problem

CMSC 330 18

Reference Counting Example
stack

1

1

2



10

CMSC 330 19

Reference Counting Example
stack

1

1

2

1

1

CMSC 330 20

Reference Counting Example
stack

1

1

2

1

1



11

CMSC 330 21

Reference Counting Example
stack

1

1

2

1

1

0

CMSC 330 22

Reference Counting Example
stack

1 2

1

1



12

CMSC 330 23

Reference Counting Example
stack

1 2

1

1 0

CMSC 330 24

Reference Counting Example
stack

1



13

CMSC 330 25

Tradeoffs
• Advantage:  incremental technique

– Generally small, constant amount of work per memory write
– With more effort, can even bound running time

• Disadvantages:
– Cascading decrements can be expensive
– Can’t collect cycles, since counts never go to 0
– Also requires extra storage for reference counts

CMSC 330 26

Mark and Sweep GC

• Idea:  Only objects reachable from stack could 
possibly be live
– Every so often, stop the world and do GC:

• Mark all objects on stack as live
• Until no more reachable objects,

– Mark object reachable from live object as live
• Deallocate any non-reachable objects

• This is a tracing garbage collector
• Does not handle fragmentation problem



14

CMSC 330 27

Mark and Sweep Example
stack

CMSC 330 28

Mark and Sweep Example
stack



15

CMSC 330 29

Mark and Sweep Example
stack

CMSC 330 30

Mark and Sweep Example
stack



16

CMSC 330 31

Mark and Sweep Example
stack

CMSC 330 32

Mark and Sweep Example
stack



17

CMSC 330 33

Mark and Sweep Example
stack

CMSC 330 34

Tradeoffs with Mark and Sweep
• Pros:

– No problem with cycles
– Memory writes have no cost

• Cons:
– Fragmentation

• Available space broken up into many small pieces
– Thus many mark-and-sweep systems may also have a 

compaction phase (like defragmenting your disk)
– Cost proportional to heap size

• Sweep phase needs to traverse whole heap – it touches 
dead memory to put it back on to the free list

– Not appropriate for real-time applications
• You wouldn’t like your auto’s braking system to stop working for a 

GC while you are trying to stop at a busy intersection



18

CMSC 330 35

Stop and Copy GC

• Like mark and sweep, but only touches live 
objects
– Divide heap into two equal parts (semispaces)
– Only one semispace active at a time
– At GC time, flip semispaces

• Trace the live data starting from the stack
• Copy live data into other semispace
• Declare everything in current semispace dead; switch to 

other semispace

CMSC 330 36

Stop and Copy Example
stack



19

CMSC 330 37

Stop and Copy Example
stack

����

����

CMSC 330 38

Stop and Copy Example
stack

����

����

�

�



20

CMSC 330 39

Stop and Copy Example
stack

����

����

�

�

�

�

CMSC 330 40

Stop and Copy Tradeoffs

• Pros:
– Only touches live data
– No fragmentation; automatically compacts

• Will probably increase locality
• Cons:

– Requires twice the memory space
– Like mark and sweep, need to “stop the 

world”
• Program must stop running to let garbage 

collector move around data in the heap



21

CMSC 330 41

The Generational Principle

Object lifetime increases ⇒

M
or

e 
ob

je
ct

s l
iv

e 
⇒

“Young
objects
die quickly;
old objects
keep living”

CMSC 330 42

Generational Collection
• Long lived objects get copied over and over

– Idea:  Have more than one semispace, divide 
into generations
• Older generations collected less often
• Objects that survive many collections get 

pushed into older generations
• Need to track pointers from old to young 

generations to use as roots for young 
generation collection

• One popular setup
– Generational stop and copy



22

CMSC 330 43

More Issues in GC (cont’d)

• Stopping the world is a big draw-back
– Unpredictable performance

• Bad for real-time systems
– Need to stop all threads

• Without a much more sophisticated GC

• One-size fits all solution
– Sometimes, GC just gets in the way
– But correctness comes first

CMSC 330 44

What Does GC Mean to You?

• Ideally, nothing
– It should make your life easier
– And shouldn’t affect performance too much

• May even give better performance than 
you’d have with explicit deallocation

• If GC becomes a problem, hard to solve
– You can set parameters of the GC
– You can modify your program
– But don’t optimize too early!



23

CMSC 330 45

Dealing with GC Problems
• Best idea:  Measure where your problems are coming 

from
• For HotSpot VM, try running with 

– -verbose:gc
– Prints out messages with statistics when a GC 

occurs

• [GC 325407K->83000K(776768K), 0.2300771 secs]
• [GC 325816K->83372K(776768K), 0.2454258 secs]
• [Full GC 267628K->83769K(776768K), 1.8479984 secs]

CMSC 330 46

GC Parameters

• Can resize the generations
– How much to use initially, plus max growth

• Change the total heap size
– In terms of an absolute measure
– In terms of ratio of free/allocated data

• For server applications, two common tweaks:
– Make the total heap as big as possible
– Make the young generation half the total heap



24

CMSC 330 47

Increasing Memory Performance

• Don’t allocate as much memory
– Less work for your application
– Less work for the garbage collector
– Should improve performance

• (Why only “should”?)
• Don’t hold on to references

– Null out pointers in data structures
– Or use weak references

CMSC 330 48

Find the Memory Leak
class Stack {

private Object[] stack;
private int index;
public Stack(int size) {

stack = new Object[size];
}
public void push(Object o) {

stack[index++] = o;
}
public void pop() {

return stack[index--];
}

}
– From Haggar, Garbage Collection and the Java Platform Memory Model

Answer: pop() leaves item on stack array; storage not reclaimed.



25

CMSC 330 49

Bad Ideas (Usually)

• Calling System.gc()
– This is probably a bad idea
– You have no idea what the GC will do
– And it will take a while

• Managing memory yourself
– Object pools, free lists, object recycling
– GC’s have been heavily tuned to be efficient


