
1

CMSC 330: Organization of
Programming Languages

Exceptions
Parameter Passing

CMSC 330 2

Preconditions

• Functions often have requirements on their
inputs
// Return maximum element in A[i..j]

int findMax(int[] A, int i, int j) { ... }

– A is nonempty
– A isn't null
– i and j must be nonnegative
– i and j must be less than A.length
– i < j (maybe)

• These are called preconditions

CMSC 330 3

Dealing with Errors

• What do you do if a precondition isn’t met?

• What do you do if something unexpected
happens?
– Try to open a file that doesn’t exist
– Try to write to a full disk

CMSC 330 4

Signaling Errors

• Style 1: Return invalid value

// Returns value key maps to, or null if no

// such key in map

Object get(Object key);

– Disadvantages?

CMSC 330 5

Signaling Errors (cont’d)
• Style 2: Return an invalid value and status

static int lock_rdev(mdk_rdev_t *rdev) {

...

if (bdev == NULL)

return -ENOMEM;

...

}

// Returns NULL if error and sets global

// variable errno

FILE *fopen(const char *path, const char *mode);

CMSC 330 6

Problems with These Approaches

• What if all possible return values are valid?
– E.g., findMax from earlier slide
– What about errors in a constructor?

• What if client forgets to check for error?
– No compiler support

• What if client can’t handle error?
– Needs to be dealt with at a higher level

• Poor modularity- exception handling code
becomes scattered throughout program

• 1996 Ariane 5 failure classic example of this …

2

CMSC 330 7

Ariane 5 failure
Design issues: In order to save funds and ensure reliability,

and since the French Ariane 4 was a successful rocket, the
Inertial Reference System (SRI) from Ariane 4 was reused
for the Ariane 5.

What happened?: On June 4, 1996 the Ariane 5 launch vehicle
failed 39 seconds after liftoff causing the destruction of over
$100 million in satellites.

Cause of failure: The SRI, which controls the attitude
(direction) of the vehicle by sending aiming commands to
the rocket nozzle, sent a bad command to the rocket
causing the nozzle to move the rocket toward the
horizontal.

The vehicle tried to switch to the backup SRI, but that failed for
the same reason 72 millisec earlier.

The vehicle had to then be destroyed.

CMSC 330 8

Why Ariane 5 failed
• SRI tried to convert a floating point number out of range to

integer. Therefore it issued an error message (as a 16 bit
number). This 16 bit number was interpreted as an integer
by the guidance system and caused the nozzle to move
accordingly.
– The backup SRI performed according to specifications and

failed for the same reason.
• Ada range checking was disabled since the SRI was

supposedly processing at 80% load and the extra time
needed for range checking was deemed unnecessary since
the Ariane 4 software worked well.

• The ultimate cause of the problem was that the Ariane 5 has
a more pronounced angle of attack and can move
horizontally sooner after launch. The “bad value” was
actually the appropriate horizontal speed of the vehicle.

CMSC 330 9

Better approaches: Exceptions in Java

• On an error condition, we throw an exception

• At some point up the call chain, the exception is
caught and the error is handled

• Separates normal from error-handling code

• A form of non-local control-flow
– Like goto, but structured

CMSC 330 10

Throwing an Exception

• Create a new object of the class Exception, and
throw it

if (i >= 0 && i < a.length)

return a[i];

throw new ArrayIndexOutOfBounds();

• Exceptions thrown are part of the return type in
Java
– When overriding method in superclass, cannot throw

any more exceptions than parent’s version

CMSC 330 11

Method throws declarations

• A method declares the exceptions it might
throw
– public void openNext() throws

UnknownHostException, EmptyStackException
{ … }

• Must declare any exception the method might
throw
– Unless it is caught in (masked by) the method
– Includes exceptions thrown by called methods
– Certain kinds of exceptions excluded

CMSC 330 12

Exception Hierarchy

Throwable

Error Exception

RuntimeException

Checked

Unchecked

3

CMSC 330 13

• Subclasses of RuntimeException and Error are
unchecked
– Need not be listed in method specifications

• Currently used for things like
– NullPointerException
– IndexOutOfBoundsException
– VirtualMachineError

• Is this a good design?

Unchecked Exceptions

CMSC 330 14

• First catch with supertype of the exception
catches it

• finally is always executed
try { if (i == 0) return; myMethod(a[i]); }
catch (ArrayIndexOutOfBounds e) {

System.out.println(“a[] out of bounds”); }
catch (MyOwnException e) {

System.out.println(“Caught my error”); }
catch (Exception e) {

System.out.println(“Caught” + e.toString()); throw e; }
finally { /* stuff to do regardless of whether an exception */

/* was thrown or a return taken */ }

Exception Handling

CMSC 330 15

Implementing Exceptions in Java

• JVM knows about exceptions, and has built-in
mechanism to handle them

public class A {
void foo() {

try {
Object f = null;
f.hashCode();

}
catch (NullPointerException e) {

System.out.println("caught");
}

}
}

CMSC 330 16

Implementing Exns in Java

• Exception table tells JVM what handlers there are for
which region of code
– Notice that putting this “off to the side” keeps it out of the main

code path
• (Though less important for an interpreted language)

void foo();
Code:
0: aconst_null
1: astore_1
2: aload_1
3: invokevirtual #2;

//hashCode
6: pop
7: goto 19

10: astore_1
11: getstatic #4; //System.out
14: ldc #5; //String caught
16: invokevirtual #6; //println
19: return

Exception table:
from to target type
0 7 10 NullPointerExn

CMSC 330 17

Implementing Exns in C++

• Design battle: resumption vs. termination
– Resumption: an exception handler can resume

computation at the place where the exception was
thrown

– Termination: throwing an exception terminates
execution at the point of the exception

• C++ settled on termination
– What do you think?

CMSC 330: Organization of
Programming Languages

Parameter Passing
and More on Scoping

4

CMSC 330 19

Order of Evaluation

• Will OCaml raise a Division_by_zero exception?

– No: && and || are short-circuiting in OCaml
• e1 && e2 evaluates e1. If false, it returns false. Otherwise,

it returns the result of evaluating e2
• e1 || e2 evaluates e1. If true, it returns true. Otherwise, it

returns the result of evaluating e2

let x = 0

if x != 0 && (y / x) > 100 then
print_string "OCaml sure is fun"

if x == 0 || (y / x) > 100 then
print_string "OCaml sure is fun"

CMSC 330 20

Order of Evaluation (cont’d)

• C, C++, Java, and Ruby all short-circuit &&, ||
• But some languages don’t, like Pascal:

– So this would need to be written as

x := 0;
...
if (x <> 0) and (y / x > 100) then

writeln('Sure OCaml is fun');

x := 0;
...
if x <> 0 then

if y / x > 100 then
writeln('Sure OCaml is fun');

CMSC 330 21

Call-by-Value

• In call-by-value (cbv), arguments to functions
are fully evaluated before the function is invoked
– Also in OCaml, in let x = e1 in e2, the expression e1

is fully evaluated before e2 is evaluated
• C, C++, and Java also use call-by-value

int r = 0;

int add(int x, int y) { return r + x + y; }

int set_r(void) {
r = 3;
return 1;

}

add(set_r(), 2);

CMSC 330 22

Call-by-Value in Imperative Languages
• In C, C++, and Java, call-by-value has another

feature
– What does this program print?

– Prints 0

void f(int x) {
x = 3;

}

int main() {
int x = 0;
f(x);
printf("%d\n", x);

}

CMSC 330 23

Call-by-Value in Imperative Languages, con't.

• Actual parameter is copied to stack location of
formal parameter

int main() {
int x = 0;
f(x);
printf("%d\n", x);

}

x 0void f(int x) {
x = 3;

}
x 03

CMSC 330 24

Call-by-Reference

• Alternative idea: Implicitly pass a pointer or
reference to the actual parameter
– If the function writes to it the actual parameter is modified

int main() {
int x = 0;
f(x);
printf("%d\n", x);

}

void f(int x) {
x = 3;

}

x 0
x

3

5

CMSC 330 25

Call-by-Reference (cont’d)

• Advantages
– The entire argument doesn't have to be copied to the

called function
• It's more efficient if you’re passing a large (multi-word)

argument
• Can do this without explicit pointer manipulation

– Allows easy multiple return values
• Disadvantages

– Can you pass a non-variable (e.g., constant, function
result) by reference?

– It may be hard to tell if a function modifies an argument
– What if you have aliasing?

CMSC 330 26

Aliasing

• We say that two names are aliased if they refer
to the same object in memory
– C examples (this is what makes optimizing C hard)

int x;
int *p, *q; /*Note that C uses pointers to

simulate call by reference */
p = &x; /* *p and x are aliased */
q = p; /* *q, *p, and x are aliased */

struct list { int x; struct list *next; }
struct list *p, *q;
...
q = p; /* *q and *p are aliased */

/* so are p->x and q->x */
/* and p->next->x and q->next->x... */

CMSC 330 27

Call-by-Reference (cont’d)

• Call-by-reference is still around (e.g., C++), but
seems to be less popular in newer languages
– Older languages (e.g., Fortran, Ada, C with pointers)

still use it
– Possible efficiency gains not worth the confusion
– “The hardware” is basically call-by-value

• Although call by reference is not hard to implement and
there may be some support for it

CMSC 330 28

Call-by-Value Discussion

• Call-by-value is the standard for languages with
side effects
– When we have side effects, we need to know the

order in which things are evaluated, otherwise
programs have unpredictable behavior

– Call-by-reference can sometimes give different
results

– Call-by-value specifies the order at function calls
• But there are alternatives to call by value and

call by reference ...

CMSC 330 29

Call-by-Name
• Call-by-name (cbn)

– First described in description of Algol (1960)
– Generalization of Lambda expressions (to be

discussed later)
– Idea simple: In a function:

Let add x y = x+y
add (a*b) (c*d)

Then each use of x and y in the function definition is
just a literal substitution of the actual arguments,
(a*b) and (c*d), respectively

– But implementation: Highly complex, inefficient, and
provides little improvement over other mechanisms,
as later slides demonstrate

Example:
add (a*b) (c*d) =

(a*b) + (c*d) � executed function

CMSC 330 30

Call-by-Name (cont’d)

• In call-by-name (cbn), arguments to functions
are evaluated at the last possible moment, just
before they're needed

let add x y = x + y

let z = add (add 3 1) (add 4 1)

OCaml; cbv; arguments
evaluated here

add x y = x + y

z = add (add 3 1) (add 4 1)

Haskell; cbn; arguments
evaluated here

6

CMSC 330 31

Call-by-Name (cont’d)

• What would be an example where this
difference matters?

let cond p x y = if p then x else y
let rec loop n = loop n
let z = cond true 42 (loop 0)

cond p x y = if p then x else y
loop n = loop n
z = cond True 42 (loop 0)

OCaml; cbv; infinite recursion
at call

Haskell; cbn; never evaluated
because parameter is never used

CMSC 330 32

Call by Name Examples
1. P(x) {x = x + x;}

Y = 2;
P(Y);
write(Y)

2. But if F(m) {m = m + 1; return m;}
What is:

int A[10];
m = 1;
P(A[F(m)])

P(A[F(m)]) � A[F(m)] = A[F(m)]+A[F(m)] � A[m++] = A[m++]+A[m++]
� A[2] = A[3]+A[4]

� means Y = Y+Y = 4

CMSC 330 33

But: Call by Name Anomalies
3. Write a program to exchange values of X and Y: (e.g.,

swap(X,Y))
Usual way: swap(x,y) {t=x; x=y; y=t;}
– Cannot do it with call by name. Cannot handle both

of following: swap(m, A[m]) swap(A[m],m)
– One of these must fail. Why?

CMSC 330 34

Two Cool Things to Do with CBN

• CBN is also called lazy evaluation
– (CBV is also known as eager evaluation)

• Build control structures with functions

• Build “infinite” data structures

let cond p x y = if p then x else y

integers n = n::(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)

CMSC 330 35

Three-Way Comparison
• Consider the following program under the three

calling conventions
– For each, determine i's value and which a[i] (if any) is

modified
int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",
i, a[0], a[1], a[2]);

}
CMSC 330 36

Example: Call-by-Value

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",
i, a[0], a[1], a[2]);

}

2

1

g

5

1

f

2101

a[2]a[1]a[0]i

7

CMSC 330 37

Example: Call-by-Reference

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",
i, a[0], a[1], a[2]);

}

102

2101

a[2]a[1]a[0]i /f/g

102

CMSC 330 38

Example: Call-by-Name

int i = 1;

void p(int f, int g) {
g++;
f = 5 * i;

}

int main() {
int a[] = {0, 1, 2};
p(a[i], i);
printf("%d %d %d %d\n",
i, a[0], a[1], a[2]);

}

102

2101

a[2]a[1]a[0]i

i++;
a[i] = 5*i;

The expression a[i] isn't
evaluated until needed, in
this case after i has
changed.

2 10

CMSC 330 39

Other Calling Mechanisms
• Call-by-result

– Actual argument passed by reference, but not initialized
– Written to in function body (and since passed by

reference, affects actual argument)
• Call-by-value-result

– Actual argument copied in on call (like cbv)
– Mutated within function, but does not affect actual yet
– At end of function body, copied back out to actual

• These calling mechanisms didn't really catch on
– They can be confusing in cases
– Recent languages don’t use them

CMSC 330 40

CBV versus CBN
• CBN is flexible- strictly more programs terminate

– E.g., where we might have an infinite loop with cbv,
we might avoid it with cbn by waiting to evaluate

• Order of evaluation is really hard to see in CBN
– Call-by-name doesn't mix well with side effects

(assignments, print statements, etc.)
• Call-by-name is more expensive since:

– Functions have to be passed around
– If you use a parameter twice in a function body, its

thunk (the unevaluated argument) will be called twice
• Haskell actually uses call-by-need (each formal parameter is

evaluated only once, where it's first used in a function)

CMSC 330 41

CBV versus CBN (cont’d)

• Call-by-name isn't very “mainstream”
– Haskell solves these issues by not having side

effects
– But then someone invented “monads” (constructed

values that simulate side effects) so you can have
side effects in a lazy language

• Call-by-name's benefits may not be worth its
cost

CMSC 330 42

How Function Calls Really Work

• Function calls are so important they usually
have direct instruction support on the hardware

• We won’t go into the details of assembly
language programming
– See CMSC 212, 311, 412, or 430

• But we will discuss just enough to know how
functions are called

8

CMSC 330 43

Machine Model (Generic UNIX)
• The text segment

contains the
program's source
code

• The data segment
contains global
variables, static data
(data that exists for
the entire execution
and whose size is
known), and the heap

• The stack segment
contains the activation
records for functions

(text segment)

(data segment)

CMSC 330 44

Machine Model (x86)

• The CPU has a fixed number of registers
– Think of these as memory that’s really fast to access
– For a 32-bit machine, each can hold a 32-bit word

• Important x86 registers
– eax generic register for computing values
– esp pointer to the top of the stack
– ebp pointer to start of current stack frame
– eip the program counter (points to next instruction in

text segment to execute)

CMSC 330 45

The x86 Stack Frame/Activation Record
• The stack just after f transfers control to g

return instr ptr (eip)

f’s locals, saves

previous frames

parameters for g

frame boundary

frame boundary

ebp

esp

Based on Fig 6-1 in Intel ia-32 manual

saved ebp of f

return instruction ptr

ebp for caller of f

CMSC 330 46

x86 Calling Convention
• To call a function

– Push parameters for function onto stack
– Invoke CALL instruction to

• Push current value of eip onto stack
– I.e., save the program counter

• Start executing code for called function
– Callee pushes ebp onto stack to save it

• When a function returns
– Put return value in eax
– Invoke LEAVE to pop stack frame

• Set esp to ebp
• Restore ebp that was saved on stack and pop it off the stack

– Invoke RET instruction to load return address into eip
• I.e., start executing code where we left off at call

CMSC 330 47

Example
int f(int a, int b) {

return a + b;
}

int main(void) {
int x;

x = f(3, 4);
}

f:
pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

main:
...
subl $8, %esp
pushl $4
pushl $3
call f

l: addl $16, %esp
movl %eax, -4(%ebp)
leave
ret

gcc -S a.c

CMSC 330 48

Lots More Details
• There’s a whole lot more to say about calling

functions
– Local variables are allocated on stack by the callee

as needed
• This is usually the first thing a called function does

– Saving registers
• If the callee is going to use eax itself, you’d better save it to

the stack before you call
– Passing parameters in registers

• More efficient than pushing/popping from the stack
– Etc...

• See other courses for more details

