Lambda Calculus Introduction

Introduction

- We’ve seen that several language conveniences aren’t strictly necessary
 - Multi-argument functions: use currying or tuples
 - Loops: use recursion
 - Side-effects: we don’t need them either
- Goal: come up with a “core” language that’s as small as possible and still Turing complete
 - This will give a way of illustrating important language features and algorithms

Revised Rule for Application

To apply something to an argument:
- Evaluate it to produce a closure
- Evaluate the argument (call-by-value)
- Evaluate the body of the closure, in
 - The current environment, extended with the closure’s environment, extended with the binding for the parameter

Example

\[
\begin{align*}
\ast &; (\text{fun } x = (\text{fun } y = + x y)) \rightarrow (\ast, \lambda x.\, (\text{fun } y = + x y)) \\
\ast &; 3 \rightarrow 3 \\
\ast &; (\text{fun } x = (\text{fun } y = + x y)) 3 \rightarrow (\ast, 3, \lambda y.\, (+ x y)) \\
\ast &; (\text{fun } x = (\text{fun } y = + x y)) 3 \rightarrow (\ast, 3, \lambda y.\, (+ x y))
\end{align*}
\]

Lambda Calculus

- A lambda calculus expression is defined as
 \[
 e ::= x \quad \text{variable} \\
 | \lambda x. e \quad \text{function} \\
 | e e \quad \text{function application}
 \]
- \(\lambda x. e\) is like \((\text{fun } x \rightarrow e)\) in OCaml
- That’s it! Only higher-order functions

Intuitive Understanding

- Before we work more with the mathematical notation of lambda calculus, we’re going to play a puzzle game!
- From: http://worrydream.com/AlligatorEggs/
Puzzle Pieces

- Hungry alligators: eat and guard family
- Old alligators: guard family
- Eggs: hatch into new family

Example Families

- Families are shown in columns
- Alligators guard families below them

Puzzle Rule 1: The Eating Rule

- If families are side-by-side the top left alligator eats the entire family to her right
- The top left alligator dies
- Any eggs she was guarding of the same color hatch into what she just ate

Eating Rule Practice

- What happens to these alligators?
 - Puzzle 1: Puzzle 2:
 - Answer 1: Answer 2:

Puzzle Rule 2: The Color Rule

- If an alligator is about to eat a family and a color appears in both families then we need to change that color in one of the families.
- If a color appears in both families, but only as an egg, no color change is made.

Puzzle Rule 3: The Old Alligator Rule

- When an old alligator is only guarding one family it dies.
Challenging Puzzles!

- Try to reduce these groups of alligators as much as possible using the three puzzle rules:

![Alligator Games](image)

- Challenge your neighbors with puzzles of your own.

More Puzzles

- When Family Not eats Family True it becomes Family False and when Not eats False it becomes True—what color should the white eggs be?

![Puzzle Image](image)

- What do the AND and OR families look like?

Lambda Calculus

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable (e: egg)} \]

 \[\lambda x.e \quad \text{function (\lambda x: alligator)} \]

 \[e e \quad \text{function application (adjacency of families)} \]

- \(\lambda x.e \) is like \(\{ \text{fun } x \to e \} \) in OCaml

- That’s it! Only higher-order functions

Three Conveniences

- Syntactic sugar for local declarations

 \(\text{let } x = e1 \text{ in } e2 \) is short for \((\lambda x.e2) e1 \)

- The scope of \(\lambda \) extends as far to the right as possible

 \(\lambda x. y. x \) is \(\lambda x. (\lambda y. (x y)) \)

- Function application is left-associative

 \(x y z \) is \((x y) z \)

 - Same rule as OCaml

Examples (try with alligators too)

- \((\lambda x) x \to z \)

- \((\lambda x) y \to y \)

- \((\lambda x y) z \to z y \)

 - A function that applies its argument to \(y \)

- \((\lambda x y) (\lambda z) z \to (\lambda z) y \to y \)

- \((\lambda x. y) x \to \lambda y. (\lambda z) x \times (\lambda z) x \to xx \)

Operational Semantics

- All we’ve got are functions, so all we can do is call them

- To evaluate \((\lambda x.e1) e2 \)

 - Evaluate \(e1 \) with \(x \) bound to \(e2 \)

- This application is called “beta-reduction”

 - \((\lambda x.e1) e2 \to e1[x/e2] \) (the eating rule)

 - \(e1[x/e2] \) is \(e1 \) where occurrences of \(x \) are replaced by \(e2 \)

 - Slightly different than the environments we saw for OCaml

 - Do substitutions to replace formals with actuals, instead of carrying around environment that maps formals to actuals

 - We allow reductions to occur anywhere in a term
Static Scoping and Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - $(\lambda x. (\lambda x.x)) z \rightarrow ?$
 - The rightmost "x" refers to the second binding
 - This is a function that takes its argument and applies it to the identity function
- This function is "the same" as $(\lambda x. (\lambda y.y))$
 - Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion (color rule)
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

Static Scoping (cont’d)

- How about the following?
 - $(\lambda x. (\lambda y.x) y) y \rightarrow ?$
 - When we replace y inside, we don’t want it to be "captured" by the inner binding of y
- This function is "the same" as $(\lambda x.\lambda z.x z)$