CMSC330 - SUMMER 2006 - MIDTERM 1

INSTRUCTOR: GUILHERME FONSECA

- Write all answers in the answers book provided.
- You can keep the exam. Only return the answers book.
- You are allowed to consult one letter-size paper, handwritten on one side. Besides that, the exam is closed book, closed notes.
- There are 8 question, totaling 110 points, in this exam. You have 1 hour and 20 minutes to finish it.
- (1) (20 points) What is the output of each Ruby program below? Ignore any possible warning message.

```
(a) puts("ab" +
      if nil
          "cd"
      else
          "ef"
      end)
(b) a = b = ["c", "a", "b"]
   a = a.sort
   puts b
(c) a = [1, 2, 3]
   b = ["x", "y"]
   c = [a, b, [a, b]]
   puts c[-1][0]
(d) h = Hash.new(0)
   h["a"] = h["b"]
   h["b"] = 7
   h["c"] += 2
   puts "#{h["a"]} #{h["b"]} #{h["c"]}"
```

- (2) (10 points) Write a Ruby program that reads several lines from the input, and prints only the lines that contain **exclusively** the following characters: uppercase and lowercase letters, digits, and underscore. For example, lines that contain space or punctuation should not be printed.
- (3) (21 points) Write a formal regular expression for each of the languages below. The alphabet is $\Sigma = \{a, b\}$. The only operators allowed are concatenation, * and | (do not write a Ruby regular expression).
 - (a) $\{w \mid w \text{ begins with } a \text{ and ends with } a\}$
 - (b) $\{w \mid \text{all } a \text{'s are immediatly followed by } b \text{ in } w \}$
 - (c) The union of the two languages above.

(4) (8 points) Write a formal regular expression the language below. The alphabet is $\Sigma = \{a, b, c\}$. The only operators allowed are concatenation, * and | (do not write a Ruby regular expression).

 $\{w \mid \text{all consonants are adjacent to a consonant on at least one side in } w \}$

Notice that b and c are the only consontants in the alphabet Σ . For example, a, bb, bc, and aabbabcba are in the language, but b, ab, and aba are not.

- (5) (21 points) Write a DFA for each of the languages below. The alphabet is $\Sigma = \{a, b\}$.
 - (a) $\{w \mid w \text{ contains at most one } b \}$
 - (b) $\{w \mid \#a(w) = 0 \pmod{2} \text{ and } \#b(w) \neq 0 \pmod{3} \}$
 - (c) $\{w \mid w \text{ ends with } aab\}$
- (6) (10 points) Convert the following NFA to a NFA without ε transitions.

(7) (10 points) Convert the following NFA without ε transitions to a DFA.

(8) (10 points) Convert the following formal regular expression to a NFA:

$$((aa|bb|c)^*cc(a|b))^*$$