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Artifact

How much QA is enough?

From Biological Sciences: Capture-Recapture
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Population (Unknown Size)Capture n1 animals

From Biological Sciences: Capture-Recapture
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Population (Unknown Size)Capture n2 animals,

where m2 are marked

Idea: We can estimate population size from the capture statistics, 

e.g. LPE: (n1 x n2) / m2

Capture-Recapture for Defect Estimation

 Application to QA Activities: 
 Use capture-recapture models to estimate total 

number of defects

 Use total number of defects to inform QA decisions

 Many open issues:
 Choice of C/R model?

 Validity of C/R model assumptions?

 Choice of estimator?
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Briand, et al. 2000: Primary Contributions

 C/R Models tend to underestimate remaining defects

 Using a very small number of inspectors (< 4) leads to 
particularly inaccurate estimates

 Model calibration has a number of theoretical limitations

 The Jackknife estimator is recommended, and is based 
on a model that allows for different defect detection 
probabilities
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Outline

 C/R Models

 Estimators

 Research Method

 Results and Analysis

 Issues

 Discussion: Validity for Software Testing
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C/R Models

 Assumptions:
 Only two trapping occasions
 No animals enter or leave population between occasions

 All animals have an equal likelihood of being captured

 Can address first two, but third assumption can be tricky
 Two sources of variation

 Heterogeneity: Animals have differing capture probabilities.

 Time response: Capture probability varies by time.
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Model Detection Probability Inspector Capability

M0 Same Same

Mh Different Same

Mt Same Different

Mth Different Different

Observation: No model addresses the “interaction effect” –

Inspector A is good at finding memory leaks, but poor at detecting 

race conditions.  

Estimators

 Given the four C/R models
 Need estimators based on sources of variation
 Many estimators suggested in biology literature
 Each requires different defect detection data

 All data provided by a matrix of Defects x Inspectors
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Model(Estimator)

M0(MLE)

Mt(MLE)

Mt(Ch)

Mh(JE)

Mh(Ch)

Mth(Ch)

Research Method

 Use an existing data set – Requirements inspection data from 
Basili, et al. 1996

 Create “virtual inspections” from data set
 Vary number of inspectors and number of actual defects in 

document

 Compare model predictions to actual data for each virtual 
inspection
 Relative Error (RE) for each model estimate
 Describe central tendency and variability of RE

 Report how often a model fails to produce estimate

 Select best model
 Based on ordered hypotheses (!) using Dunn-Bonferroni tests
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Varying Number of Inspectors and Defects

 Virtual inspections created by choosing data of n 
inspectors from k actual inspectors

 Number of defects varied by sampling from all 
possible combinations of defects (hold number of 
inspectors constant)
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RE Data from Virtual Inspections
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 Compute Median Relative Error 

as Bias (central tendency)

 Compute interquartile range 
(IQR) of RE (variability)

 Check for extreme outliers 
(variability)



Results: Varying Number of Inspectors

 Generally, models underestimate

 Ch estimators are most accurate, but most prone to extreme 
outliers

 Tendency for extreme outliers decreases as number of 
inspectors increases

 No estimator is reasonably accurate with less than four 
inspectors, but calibration may be able to help

135 Inspectors 6 Inspectors

Results: Varying Number of Defects

 Tendency for extreme outliers decreases as number of 
defects increases

 Median RE not greatly affected by number of defects

 Mh and Mth outperform M0 – Mt does not

 For Mh, Ch estimators have median RE closer than JE 
estimator

1424 defects, 6 inspectors

Results: Selecting Thresholds

 Threshold for number of inspectors: 4 Inspectors

 Threshold for number of defects (see Figure 7): 

 Largest difference in median RE between 6 and 12 defects

 After 12 defects, improvements are minimal.

 For Mth, effect of number of defects minimal when using at least 

6 inspectors

15No. Inspectors vs. Average Median RE

Results: Best Estimators

 For Mt: Ch estimator outperforms MLE for 4 and 5 inspectors

 For Mh: Minimal difference for 4 or 5 inspectors, but for 4 
inspectors, Ch prone to extreme overestimation
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Median RE (4 Inspectors)

Results: Most Appropriate Model

 Idea: Gathering data costs money, so adding data should 
significantly improve the model

 Compare estimates pairwise based on two ordered 
hypotheses

 Significant Differences for 4 Inspectors: Mh vs. M0, Mth vs. Mt

 For 5 Inspectors: 

 All comparisons significant except Mh vs. Mth

 Mh(*) vs. M0 much more significant than Mt vs. M0

 Mh(JE) vs. M0 much more significant than Mh(Ch) vs. M0

 Mh(JE) considered best model as measured by largest 
significant difference.
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Results: Failure Rate

 Estimators rarely fail with at least 4 inspectors

 Mh(Ch) has highest failure rate across all conditions

 Mh(JE) has lowest failure rate across all conditions

 Provides more support for Mh(JE)
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Results: Calibrating Models

 Calibration improves median RE in all cases, but increases 
variability (particularly for 2 inspectors)
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2 Inspectors 3 Inspectors

Issues

 Data set

 Original experiment was evaluating PBR, which strives to minimize 
overlap (estimators depend on overlap)

 Relatively small number of inspectors and defects

 Ordered hypotheses
 All data fairly easy to obtain

 Cost of simulation?

 Results
 Mh(JK) still has very high variability, even for 5-6 inspectors

 Walia, et al. 2008 found that 26 inspectors are required to stabilize 
the Mh(JK) variability (the worst among 12 models considered)

20

Discussion: C/R for Software Testing

 Data set was requirements inspections – what about defect 
estimation during testing?

 Related Work – Scott and Wohlin 2008 applied C/R to unit 
testing in a case study
 Data matrix was Testers x Faults

 Results from were “encouraging” (qualitative analysis)

 Can we use Test Suite x Defects ?

 Randomly generated test suites of fixed size

 What would Mt attempt to account for?
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