Discussion:

by Lionel C. Briand, Khaled El Emam, Bernd G. Freimut, and Oliver Laitenberger

Bryan Robbins
CMSC 737, Fundamentals of Software Testing
November 5, 2009

From Biological Sciences: Capture-Recapture

Capture n_1 animals
Population (Unknown Size)

Capture n_2 animals, where m_2 are marked
Population (Unknown Size)

Idea: We can estimate population size from the capture statistics, e.g., LPE: $\frac{n_1 \times n_2}{m_2}$

Capture-Recapture for Defect Estimation

- Application to QA Activities:
 - Use capture-recapture models to estimate total number of defects
 - Use total number of defects to inform QA decisions

- Many open issues:
 - Choice of C/R model?
 - Validity of C/R model assumptions?
 - Choice of estimator?

Briand, et al. 2000: Primary Contributions

- C/R Models tend to underestimate remaining defects
- Using a very small number of inspectors (< 4) leads to particularly inaccurate estimates
- Model calibration has a number of theoretical limitations
- The Jackknife estimator is recommended, and is based on a model that allows for different defect detection probabilities
Outline

- C/R Models
- Estimators
- Research Method
- Results and Analysis
- Issues
- Discussion: Validity for Software Testing

C/R Models

- Assumptions:
 - Only two trapping occasions
 - No animals enter or leave population between occasions
 - All animals have an equal likelihood of being captured

Observation: No model addresses the “interaction effect” – Inspector A is good at finding memory leaks, but poor at detecting race conditions.

<table>
<thead>
<tr>
<th>Model</th>
<th>Detection Probability</th>
<th>Inspector Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Mh</td>
<td>Different</td>
<td>Same</td>
</tr>
<tr>
<td>Mt</td>
<td>Same</td>
<td>Different</td>
</tr>
<tr>
<td>Mth</td>
<td>Different</td>
<td>Different</td>
</tr>
</tbody>
</table>

Estimators

- Given the four C/R models
 - Need estimators based on sources of variation
 - Many estimators suggested in biology literature
 - Each requires different defect detection data
 - All data provided by a matrix of Defects x Inspectors

<table>
<thead>
<tr>
<th>Model(Estimator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0(MLE)</td>
</tr>
<tr>
<td>Mt(MLE)</td>
</tr>
<tr>
<td>Mh(Ch)</td>
</tr>
<tr>
<td>Mt(Ch)</td>
</tr>
<tr>
<td>Mth(Ch)</td>
</tr>
</tbody>
</table>

Research Method

- Use an existing data set – Requirements inspection data from Basili, et al. 1996
- Create “virtual inspections” from data set
 - Vary number of inspectors and number of actual defects in document
- Compare model predictions to actual data for each virtual inspection
 - Relative Error (RE) for each model estimate
 - Describe central tendency and variability of RE
 - Report how often a model fails to produce estimate
- Select best model
 - Based on ordered hypotheses (!) using Dunn-Bonferroni tests

Varying Number of Inspectors and Defects

- Virtual inspections created by choosing data of n inspectors from k actual inspectors
- Number of defects varied by sampling from all possible combinations of defects (hold number of inspectors constant)

RE Data from Virtual Inspections

- Compute Median Relative Error as Bias (central tendency)
- Compute interquartile range (IQR) of RE (variability)
- Check for extreme outliers (variability)
Results: Varying Number of Inspectors
- Generally, models underestimate
- Ch estimators are most accurate, but most prone to extreme outliers
- Tendency for extreme outliers decreases as number of inspectors increases
- No estimator is reasonably accurate with less than four inspectors, but calibration may be able to help

Results: Varying Number of Defects
- Tendency for extreme outliers decreases as number of defects increases
- Median RE not greatly affected by number of defects
- Mh and Mth outperform M0 – Mt does not
- For Mh, Ch estimators have median RE closer than JE estimator

Results: Selecting Thresholds
- Threshold for number of inspectors: 4 Inspectors
- Threshold for number of defects (see Figure 7):
 - Largest difference in median RE between 6 and 12 defects
 - After 12 defects, improvements are minimal.
 - For Mth, effect of number of defects minimal when using at least 6 inspectors

Results: Best Estimators
- For Mt: Ch estimator outperforms MLE for 4 and 5 inspectors
- For Mh: Minimal difference for 4 or 5 inspectors, but for 4 inspectors, Ch prone to extreme overestimation

Results: Most Appropriate Model
- Idea: Gathering data costs money, so adding data should significantly improve the model
- Compare estimates pairwise based on two ordered hypotheses
 - Significant Differences for 4 Inspectors: Mh vs. M0, Mth vs. Mt
 - For 5 Inspectors:
 - All comparisons significant except Mh vs. Mth
 - Mh(*) vs. M0 much more significant than Mt vs. M0
 - Mh(JE) vs. M0 much more significant than Mh(Ch) vs. M0
- Mh(JE) considered best model as measured by largest significant difference.

Results: Failure Rate
- Estimators rarely fail with at least 4 inspectors
- Mh(Ch) has highest failure rate across all conditions
- Mh(JE) has lowest failure rate across all conditions
- Provides more support for Mh(JE)
Results: Calibrating Models

- Calibration improves median RE in all cases, but increases variability (particularly for 2 inspectors)

<table>
<thead>
<tr>
<th>2 Inspectors</th>
<th>3 Inspectors</th>
</tr>
</thead>
</table>

Issues

- Data set
 - Original experiment was evaluating PBR, which strives to minimize overlap (estimators depend on overlap)
 - Relatively small number of inspectors and defects
- Ordered hypotheses
 - All data fairly easy to obtain
 - Cost of simulation?
- Results
 - \(M_{h(JK)} \) still has very high variability, even for 5-6 inspectors
 - Walia, et al. 2008 found that 26 inspectors are required to stabilize the \(M_{h(JK)} \) variability (the worst among 12 models considered)

Discussion: C/R for Software Testing

- Data set was requirements inspections – what about defect estimation during testing?
- Related Work – Scott and Wohlin 2008 applied C/R to unit testing in a case study
 - Data matrix was Testers x Faults
 - Results from were "encouraging" (qualitative analysis)
- Can we use Test Suite x Defects?
 - Randomly generated test suites of fixed size
 - What would Mt attempt to account for?