
1

•  Reveal faults
•  Correctness
•  Reliability
•  Usability
•  Robustness
•  Performance

Goals of testing Top-down/Bottom-up
•  Bottom-up

–  Lowest level modules tested first
•  Don’t depend on any other modules
•  Driver

–  Auxiliary code that calls the module

•  Top-down
–  Executive module tested first

•  Stub
–  Auxiliary code that simulates the results of a

routine

Facts About Testing
•  Question “does program P obey

specification S” is undecidable!
•  Every testing technique embodies some

compromise between accuracy and
computational cost

•  Facts
–  Inaccuracy is not a limitation of the

technique
–  It is theoretically impossible to devise a

completely accurate technique
–  Every practical technique must sacrifice

accuracy in some way

Cost/benefit
•  Testing takes more than 50% of
the total cost of software
development
– More for critical software

•  Software quality will become the
dominant success criterion

2

Types of Verification
•  Execution-based Verification
•  Non-execution based Verification

•  Discussion

Execution-based
Verification

•  Generating and executing test cases on
the software

•  Types of testing
–  Testing to specifications

•  Black-box testing
–  Testing to code

•  Glass-box (white-box) testing

–  Remember: difference is in generating test
cases only! Verification of correctness is
usually done via specifications in both cases

Black-box Testing
•  Discussion: MAC/ATM machine
example
–  Specs

•  Cannot withdraw more than $300
•  Cannot withdraw more than your account

balance

Software x

Balance

White-box Testing
•  Example

INPUT-FROM-USER(x);

If (x <= 300) {

 INPUT-FROM-FILE(BALANCE);

 If (x <= BALANCE)

 GiveMoney x;

 else Print “You don’t have $x in your account!!”}

else

 Print “You cannot withdraw more than $300”;

Eject Card;

1

2

3

4

5

6

x: 1..1000;

3

Discussion
•  Which is superior?
•  Neither can be done exhaustively

–  Too many test cases
•  Each technique has its strengths – use

both
–  Generally, first use black-box
–  Then white-box for missed code

•  Accept that all faults cannot be
detected
–  When to stop?

Determining Adequacy
•  Statement coverage

–  Statements
•  Branch coverage

–  Both IF and ELSE
•  Path coverage
•  All-def-use-path coverage

•  Philosophy: what does it all mean?
–  Does coverage guarantee absence of faults?

•  Can we always get 100% coverage?

Surprise Quiz
•  Determine test cases so that each
print statement is executed at least
once

input(x);

if (x < 100)

 print “Line 1”;

else {

 if (x < 50) print “Line 2”

 else print “Line 3”;

}

if

1 if

2 3

end

begin

x<100 x>=100

x>=50 x<50 x>=100 x>=100

Sampling the State Space
–  If (i == j)

•  Do something wrong
–  Else

•  Do the right thing
–  Endif

•  Uniform sampling of the input space
•  Test adequacy criteria

–  Designed to insure behaviors chosen are
appropriately distributed to increase the
likelihood of revealing errors

4

Non-execution Based
•  Key idea

–  Review by a team of experts: syntax
checker?

•  Code readings
•  Walkthroughs

–  Manual simulation by team leader
•  Inspections

–  Developer narrates the reading
•  Formal verification of correctness

–  Very expensive
–  Justified in critical applications

•  Semi-formal: some assertions

Non-execution Based
•  JPL

– On the average, 2 hour inspection
–  4 major and 14 minor faults
–  Saved $25,000 per inspection

•  Rate of faults
–  Decreases exponentially by phase

•  Cleanroom approach
–  Incremental development, formal specs
and design, readings, inspections

Simulation
•  Integration with system hardware is
central to the design

•  Model the external hardware
•  Model the interface

•  Examples
•  Discussion

Boundary-value Analysis
•  Partition the program domain into
input classes

•  Choose test data that lies both
inside each input class and at the
boundary of each class

•  Select input that causes output at
each class boundary and within each
class

•  Also known as stress testing

5

Testing Approaches
•  Top-down
•  Bottom-up
•  Big bang

•  Unit testing
•  Integration testing
•  Stubs
•  System testing

Glossary
•  Fault

–  An incorrect step, process, or data definition
in a computer program

•  Error (ISO)
–  A discrepancy between a computed,

observed, or measured value or condition and
the true, specified, or theoretically correct
value or condition

•  Failure (IEEE)
–  The inability of a system or component to

perform its required functions within
specified performance requirements

Glossary
•  Exception (IEEE)

–  An event that causes suspension of normal
program operation. Types include addressing
exception, data exception, operation
exception, overflow exception, protection
exception, underflow exception

•  Anomaly (IEEE)
–  Anything observed in the documentation or

operation of software that deviates from
expectations based on previously verified
software products or reference documents

Structural Testing
•  Coverage-based testing

–  Test cases to satisfy statement
coverage

– Or branch coverage, etc
•  Complexity-based testing

–  Cyclomatic complexity
•  Graph representation
•  Find the basis set
• # Of braches + 1

6

Mutation Testing
•  Errors are introduced in the
program to produce “mutants”

•  Run test suite on all mutants and
the original program

Test Case Generation
•  Test input to the software
•  Some researchers/authors also
define the test case to contain the
expected output for the test input

Category-partition Method
•  Key idea

– Method for creating functional test
suites

–  Role of test engineer
•  Analyze the system specification
• Write a series of formal test specifications

–  Automatic generator
•  Produces test descriptions

AI Planning Method
•  Key idea

–  Input to command-driven software is a
sequence of commands

–  The sequence is like a plan
•  Scenario to test

–  Initial state
–  Goal state

7

Example
•  VCR command-line software
•  Commands

–  Rewind
•  If at the end of tape

–  Play
•  If fully rewound

–  Eject
•  If at the end of tape

–  Load
•  If VCR has no tape

Preconditions & Effects
•  Rewind

–  Precondition: if at end of tape
–  Effects: at beginning of tape

•  Play
–  Precondition: if at beginning of tape
–  Effects: at end of tape

•  Eject
–  Precondition: if at end of tape
–  Effects: VCR has no tape

•  Load
–  Precondition: if VCR has no tape
–  Effects: VCR has tape

Preconditions & Effects
•  Rewind

–  Precondition: end_of_tape
–  Effects: ¬end_of_tape

•  Play
–  Precondition: ¬end_of_tape
–  Effects: end_of_tape

•  Eject
–  Precondition: end_of_tape
–  Effects: ¬has_tape

•  Load
–  Precondition: ¬has_tape
–  Effects: has_tape

Initial and Goal States
•  Initial state

–  end_of_tape
•  Goal state

–  ¬end_of_tape
•  Plan?

–  Rewind

8

Initial and Goal States
•  Initial state

–  ¬end_of_tape & has_tape
•  Goal state

–  ¬has_tape
•  Plan?

–  Play
–  Eject

Iterative Relaxation
•  Key idea

–  Path-oriented testing
–  Problem: generation of test data that
causes a program to follow a given
path

•  Technique
–  Choose arbitrary input
–  Iteratively refine it until all the
branch predicates on the given path
evaluate to the desired outcome

w=u w=y

(w+z)>100

x=x-2

y=y+w

write(“linear”)

x2+z2≥100

y=x*z+1

write(“nl:quad”)

u>0

write(u) (y-sin(z))>0

write(“nl:sine”)

END

read(x,y,z)

u=(x-y)*2

x>y

BEGIN

0

P1

1

2 3

P2

4

5

6

P3

7

8

P4

9 P5

10

Example
Program

w=u w=y

(w+z)>100

x=x-2

y=y+w

write(“linear”)

x2+z2≥100

y=x*z+1

write(“nl:quad”)

u>0

write(u) (y-sin(z))>0

write(“nl:sine”)

END

read(x,y,z)

u=(x-y)*2

x>y

BEGIN

0

P1

1

2 3

P2

4

5

6

P3

7

8

P4

9 P5

10

input variables
x, y, z

(2x-2y+z)>100

9

Test Coverage & Adequacy
•  How much testing is enough?
•  When to stop testing
•  Test data selection criteria
•  Test data adequacy criteria

–  Stopping rule
–  Degree of adequacy

•  Test coverage criteria
•  Objective measurement of test
quality

Preliminaries
•  Test data selection

– What test cases
•  Test data adequacy criteria

– When to stop testing
•  Examples

–  Statement coverage
–  Branch coverage
–  Def-use coverage
–  Path coverage

Goodenough & Gerhart [‘75]
•  What is a software test adequacy
criterion
–  Predicate that defines “what
properties of a program must be
exercised to constitute a thorough
test”, i.e., One whose successful
execution implies no errors in a tested
program

Uses of Test Adequacy
•  Objectives of testing
•  In terms that can be measured

–  For example branch coverage
•  Two levels of testing

–  First as a stopping rule
–  Then as a guideline for additional test
cases

10

Categories of Criteria
•  Specification based

–  All-combination criterion
•  Choices

–  Each-choice-used criterion
•  Program based

–  Statement
–  Branch

•  Note that in both the above types, the
correctness of the output must be
checked against the specifications

Others
•  Random testing
•  Statistical testing

Classification according to
underlying testing approach
•  Structural testing

–  Coverage of a particular set of
elements in the structure of the
program

•  Fault-based testing
–  Some measurement of the fault
detecting ability of test sets

•  Error-based testing
–  Check on some error-prone points

Structural Testing
•  Program-based structural testing

–  Control-flow based adequacy criteria
•  Statement coverage
•  Branch coverage
•  Path coverage

–  Length-i path coverage
• Multiple condition coverage

–  All possible combinations of truth values of
predicates

–  Data-flow based adequacy criteria

11

Structural Testing
–  Data-flow based adequacy criteria

•  All definitions criterion
–  Each definition to some reachable use

•  All uses criterion
–  Definition to each reachable use

•  All def-use criterion
–  Each definition to each reachable use

Fault-based Adequacy
•  Error seeding

–  Introducing artificial faults to
estimate the actual number of faults

•  Program mutation testing
–  Distinguishing between original and
mutants
•  Competent programmer assumption

–  Mutants are close to the program
•  Coupling effect assumption

–  Simple and complex errors are coupled

Test Oracles
•  Discussion

–  Automation of oracle necessary
–  Expected behavior given
– Necessary parts of an oracle

Test Oracle
•  A test oracle determines whether a
system behaves correctly for test
execution

•  Webster dictionary - oracle
–  A person giving wise or authoritative
decisions or opinions

–  An authoritative or wise expression or
answer

12

Purpose of Test Oracle
•  Sequential systems

–  Check functionality
•  Reactive (event-driven) systems

–  Check functionality
–  Timing
–  Safety

Reactive Systems
•  Complete specification requires use
of multiple computational paradigms

•  Oracles must judge all behavioral
aspects in comparison with all
system specifications and
requirements

•  Hence oracles may be developed
directly from formal specifications

Parts of an Oracle
•  Oracle information

–  Specifies what constitutes correct behavior
•  Examples: input/output pairs, embedded assertions

•  Oracle procedure
–  Verifies the test execution results with

respect to the oracle information
•  Examples: equality

•  Test monitor
–  Captures the execution information from the

run-time environment
•  Examples

–  Simple systems: directly from output
–  Reactive systems: events, timing information,

stimuli, and responses

Regression Testing
•  Developed first version of software
•  Adequately tested the first version
•  Modified the software; Version 2 now

needs to be tested
•  How to test version 2?
•  Approaches

–  Retest entire software from scratch
–  Only test the changed parts, ignoring

unchanged parts since they have already
been tested

–  Could modifications have adversely affected
unchanged parts of the software?

13

Regression Testing
•  “Software maintenance task
performed on a modified program to
instill confidence that changes are
correct and have not adversely
affected unchanged portions of the
program.”

Regression Testing Vs.
Development Testing

•  During regression testing, an
established test set may be
available for reuse

•  Approaches
–  Retest all
–  Selective retest (selective regression
testing) ← main focus of research

Formal Definition
•  Given a program P,
•  Its modified version P’, and
•  A test set T

–  Used previously to test P
•  Find a way, making use of T to gain
sufficient confidence in the
correctness of P’

Selective Retesting

•  Tests to rerun
–  Select those tests that will produce

different output when run on P’
•  Modification-revealing test cases
•  It is impossible to always find the set of

modification-revealing test cases – (we cannot predict
when P’ will halt for a test)

–  Select modification-traversing test cases
•  If it executes a new or modified statement in P’ or

misses a statement in P’ that it executed in P

T

Tests to rerun Tests not to rerun

14

1 1 1

1

1

1
1

2 2 2

2

2

2

2

3

3 3 3
3

3
3

3
3

3 3

3

T’ = {t2, t3}

Cost of Regression Testing

Retest All
Selective Retest

Analysis
Cost = Cx Cost = Cy

We want Cx < Cy

Key is the test selection algorithm/technique

We want to maintain the same “quality of testing”

+

Factors to Consider
•  Testing costs
•  Fault-detection ability
•  Test suite size vs. Fault-detection
ability

•  Specific situations where one
technique is superior to another

15

Data-flow Testing
read(x, y)

x := x + 2; y := 2;

x := x + 2;

x := y + 2;

1:

2: 3:

5:

6:

x := x + y + 2;

x := y + 2; 7:

8:

y := y * 2; 4:

