Predicate-based Testing

 Predicates are conditions

- Divides the input domain into partitions
- Define the paths of the program

* Program P Input (X)
- Input X: Predicate C |
- If outcome of C is incorrect,
« Either C is incorrect,

true 7 \ false
’ \

+ Or statement(s) executed before C .

- Most likely, P's output is incorrect
+ Low probability of “coincidental correctness”
* Predicate-based testing

- Require certain types of tests for each
predicate in the program

Importance of Predicate-

based Testing
* Thorough testing of C used to
- Detect faults in C,
- Statements executed before C
- Statements executed after C

Terms Defined

 Predicate

- Simple or compound predicate

+ Simple predicate

- Boolean variable, or

- Relational expression,

- May have one or more NOT (-) operators
* Relational expression

- E1 <rop> E2

+ El and E2 are arithmetic expressions
< <rop> € {¢,<=,>,>=, /=, =

Terms Defined (2)

+ Compound predicate
- At least one “binary Boolean operator”
- Two or more operands
- Maybe NOT operators
- Maybe parenthesis
* Binary Boolean operators
- OR (|) and AND (&)
- Simple operand
- Operand without binary Boolean operators
+ Compound operand

- Operand with at least one binary Boolean
operator

Terms Defined (3)

* Boolean expression

- Predicate with no relational operators
- Bi = Boolean expression

* Ei = Arithmetic expression

* <rop> or <rop;> = relational
operator

+ <bop> or <bop;> = binary Boolean
operator

Assumptions

* Predicate has no syntactic faults

Types of Faults

* An “incorrect” rr‘edica‘te may have one or
more of the following faults
- Boolean operator fault
+ Incorrect AND/OR or missing/extra NOT
- Boolean variable fault
+ Incorrect Boolean variable
- Parenthesis fault
+ Incorrect location
- Relational operator fault
+ Incorrect relational operator
- Arithmetic expression fault
* Various types

Yet More Terms

- Existence of one/more faults is

“detected by a test” T if an
execution of C with T produces an
incorrect outcome of C

* Test set T for C “guarantees the

detection” of certain type of faults
F in C if the existence of F in C
can be detected by at least one
element in T, provided C doesn't
contain faults of other types

Yet More Terms (2)

+ Assume that C* has the same set of
variables as C and is not equivalent to C.
Test set T “distinguishes” C from C* if C
and C* produce different outcomes for T
+ Assume that C contains faults and C" is
the correct version of C. Test set T is
“insensitive” to the faults in C if this
test cannot distinguish C from C”

Testing Simple Predicates

* Branch testing
- TRUE and FALSE branches be
executed at least once
- Relational Operator Testing
- Given E1 <rop> E2
- Need 3 tests
-E1l > E2; E1 < E2; El1 = E2
- If only <rop> is incorrect and E1 and

E2 are correct, then detection is
guaranteed

Testing Compound

Predicates
+ Complete branch testing

- All TRUE and FALSE branches of each
simple/compound operand in compound
predicate C be executed at least once

* Exhaustive branch testing

- All combinations of TRUE and FALSE
branches of simple operands in C be
executed at least once

- C has N Boolean Operators, then N+1
simple operands. Requires 27(n+1) test
cases

Testing Compound
Predicates (2)

+ Complete relational operator testing
- Relational operator testing for each
relational expression in C
- Let C# be (E1 = E2) & (E3 /= E4)
- Assume T1 contains 3 tests
+ T11 makes E1 = E2 and E3 = E4
+ T12 makes E1> E2 and E3 > E4
+ T13 makes E1< E2 and E3 < E4
- T1 satisfies relational operator testing for
each simple operand of C#
- If E1, E2, E3, and E4 are correct, what
can we say about the correctness of
operators?

Complete Relational

Operator Testing

+ Can the test cases T11, T12, and
T13 distinguish between C# and

- (E1 = E2) & (E3 <« E4)

- (E1 /= E2) & (E3 = E4)

BR-constraints

- Given a predicate

* (<opdyp> <bop;> <opd,> <bop,> ... <opd,> <bop,>
+ <opdy is the ith simple operand

+ BR-constraint

- (D1, D2, .., Dn)
- Each Di is a symbol specifying a constraint on
the Boolean variable or relational expression
in <opd;

BR-constraints (2)

* Constraints for a Boolean variable B
- The value of B is TRUE

- The value of B is FALSE

- No constraint

+ Symbols

-t

- f

*

BR-constraints (2)

« Constraints for a relational

expression (E1 <rop> E2)

- Value is TRUE t
+ Value is FALSE f
- (E1-E2)>0 >
- (E1-E2)=0 =
- (E1-E2)<0 <

*x

+ No constraint

Constraint Satisfaction

+ Definition

- Constraint D on predicate C is covered (or
satisfied) by a test if during the execution
of C with this test, the value of each
Boolean variable or relational expression in C
satisfies the corresponding constraint in D

- E.g.,
- (=, <)
- for ((E1 >= E2) | ~(E3 > E4))

- Coverage requires that (E1 = E2) and
(E3 < E4)

Constraint Satisfaction (2)

* Definition
- Set S of BR-constraints on predicate
C is covered (or satisfied) by a test
set T if each constraint in S is

covered for C by at least one test in
-

Terms Redefined

« In terms of BR-constraints

- Branch testing (E1 <rop> E2)
- {), ()}
- Relational operator testing (E1 <rop> E2)
< {C).), (%
- Complete branch testing ((E1 <ropl> E2)
<bop> (E3 <rop2> E4))
A (), L), (5L)
- Complete relational operator testing ((E1
<ropl> E2) <bop> (E3 <rop2> E4))
e), (), (5 =), (5L O

Terms Defined

+ Concatenation
- Letu=(u, u, .., u)and v = (vq, v, ., V)
be two sequences
- (u,v) = (uy, Uy, ., Uy, Vi, Vo, ., V)
+ Other terms
- Let A and B be two sets
- A$B denotes the union of A and B
A*B is the product of A and B
|A| is the size of A
A%B is called the onto from A to B

+ Minimal set of (u,v) such that u € A and every element
in A appears in u at least once; v € B and every
element in B appears in v at least once

Terms Defined

- Observations
- |A%B| = max(|Al, IB])
- A%B may have several possible values
« If C = {(a), (b)} and D = {(c), (d)}
* Then what is C%D
- ((a.0).(b.d))
- ((a.d).(b.c))
+ How about if E = {(a), (b)} and F = {(c), (d),
(e)}

Expected Outcome

* Let X be a constraint that contains "t",

\\fll w o o ow,w

>“, "<", and “=" for a predicate C

* Value produced by C on any input

covering X: C(X)

+ X covers the TRUE branch of C if

C(X)=TRUE, and

+ X covers the FALSE branch of C if

C(X)=FALSE

- Let S be a set of constraints for C
+ Partition S info S_t and S_f

-S_t(C)={XinS | CX) =1}
- S f(€) ={Xins | cX) = f}

Lets Try Them Out

- E1 < E2

- 81 ={(<). (0), (=)}
- S1_t = {(<)}
- S1_f = {(>). (=}

- E3 >= E4

- 82 = {(>), (=), (+}}
- 82_t = {(>), (=)}
- 82_f = {(<)}

- E5 = E6

- 83 = {(=), (<), (>}
- 83_t = {(=)}
- 83_f = {(<), >}

|&

* More complex predicates

-(E3 >= E4) | (E5 = E6)
+ S4_f = {(<, <), (<,”)}

- (E3 >= E4) & (E5 = E6)
+ S9_t={(, =), (= =)}

- How about S4_t and S9_f?

E3 >= E4 ES = E6

S2_t={()(=} S3_t={(=}
S2_f = {(9} S3_£f = {(>), (9}

S4 £ =82 f % S3_f = {(<,>), (<,<)}

By choosing (<) as f2 and (>) as 3,

S4_t = (S2_t * {3} $ ({f2} * S3_1)
= {(>,>), (5>), (<3}

Surprise Quiz

- How About S9_f?

El < E2 E3 >= E4 ES = E6

1t = {(9} S21= ()= 3t ={G=)}
S1ILf={GNE} S2f={)} S3_f = {(>), (I}

S4 £=S2f% S3_f = {(<>), (<9}

By choosing (<) as {2 and (>) as {3,

S4_t = (S2_t * {f3}) $ ({£2} * S3_1)
= {G>) &) (<)

&

S5_t = S1_t % S4_t = {(<,>>), (<,=>), (5,3}
By choosing (<) as t1 and (>,>) as 4,
S5_f = (S1_f * {t4}) $ ({11} * S4_f)
= {(>>>), (5>>), (5,<>), (<,<,9)}
S5_t $ S5_f is a BRO constraint set for C@.

What Next?

- Once all the constraints have been

obtained, test cases may be
generated

