
Automatic Requirements Extraction from Test
Cases

Chris Ackermann Rance Cleaveland Samuel Huang
Arnab Ray Charles Shelton Elizabeth Latronico

October 1, 2009

Chris Ackermann, Rance Cleaveland, Samuel Huang, Arnab Ray, Charles Shelton, Elizabeth LatronicoAutomatic Requirements Extraction from Test Cases



Requirements Extraction - Cruise Control Example
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A number of ports and device variables are involved, one might wonder if some

were needed or the interface could otherwise be simplified. Perhaps knowing

about certain properties of the system may help to make such simplifications.
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State Machines

The models are often modal, and can be abstracted to state
machines.

State_1

State_2

State_3 State_4

State_5

Edges indicate transitions
between states

Annotations represent properties
of nodes and edges

Sample invariants:

Node If in state 4, then
annotation annot a applies
(not shown)

Edge If in state 2 and event b

occurs, go to state 3
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Relating Models to State Machines
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Now we have invariants like “if gas is applied, cancel cruise
control” and “if cruise control is off and the switch is pressed, turn
cruise control on.”
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Motivation

We are oftentimes given designs/models of a system that is said to
accomplish some objective. In many of these scenarios, aspects of
the model and its behavior are unstated or implied.

One Possible Question

“Given model M, does it exhibit property φ?”

A Different Question

“Given model M, what is the set of properties Φ it exhibits?”

The first question is one of validation, while the second is one of
discovery.
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Problem Statement

Models. . .

. . . often come with specifications . . .

. . . some of which are incomplete . . .

. . . some of which conflict with the implementation.

Can we refine a model (or its specifications) to make implicit
properties explicit, or show existing conflicts?

Our Problem

“Given model M with specification S , can we produce a refined
specification S ′ capturing all properties Φ that M exhibits, or
detect a conflict if one exists?”

We call such properties invariants, as they persist throughout a
model’s lifetime.
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Capturing the Model’s Behavior - Test Cases

Approach

We can simulate or otherwise explore a model’s properties by
examining its behavior; we can inspect behavior by generating test
cases from the model itself.

Several possible software options for generating test cases, we
use Reactis.

Each test case represents an execution sequence on the
model, with a specific configuration of inputs and produced
outputs (via simulation/execution).

Would like the test cases to have good coverage over all
states of the model.

But now, how do we want to discover invariants from this
behavior?
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Association Rule Mining

Background

A data mining technique, originates from the challenge to infer
relationships between variables in databases, useful for determining
which information is more essential or otherwise crucial to know.

Simple association rules

{apples,bananas} =⇒ {oranges}
{onions,potatoes} =⇒ {beef}
{laptop} =⇒ {laptop case,mouse}
{diapers,male customer} =⇒ {beer}
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Using Association Mining

As applied to state machines

Currently, we seek to discover or invalidate edge transitions.

So. . .

premise =⇒ consequent (general AR)∧
ai =⇒ b (Horn Clause)

diapers & is male =⇒ father (Class AR, or CAR)

Here we try to conclude new state transitions, so we only really care
about association rules where the consequent is a state variable, which
we can consider to be a class attribute.
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On the Complexity of Association Mining

Most formulations of the problem are NP-complete

Search heuristics are almost always utilized to prune out
unlikely paths

Common search criterion for a rule “X → y” ([Web07]):

Support: Count of how many tuples have all X ∪ {y}

Confidence: MLE of probability P (y |X )

Lift: , conf (X → y)/conf (∅ → y)

Leverage: “difference between support and support if X and y
were independent”

Strength
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Results of Association Mining

Tools used

Utilized Magnum Opus, a data mining tool for association mining

pressed=1.0 -> new=1.0
pressed=2.0 -> new=7.0
pressed=1.0 & state=1.0 -> new=1.0
state=1.0 & pressed=2.0 -> new=7.0
pressed=1.0 & state=7.0 -> new=1.0
state=1.0 -> new=1.0
pressed=2.0 & requested=7.0 -> new=7.0
state=1.0 -> new=7.0
state=7.0 -> new=1.0
state=1.0 & requested=2.0 -> new=8.0
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How to validate the association rules?

Need to determine if any association rules are not invariants,
i.e. there are some execution flows that violate the putative
rules.

The fact that we did not exhaustively enumerate all possible
runs allows for types of cases that we can potentially miss.

Example of a violated association

Maybe “When it rains, it pours” is not quite right, because it
could lightly rain, but we concluded this because we only saw
thunderstorms.
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Monitor Models

What it is

Machinery meant to capture a particular association rule in the
normal model design notation.

input 1

input 2

check
in 1

in 2

input 1

input 2

out

NOT

OR

expected

actual

OKin expected

actual

MM

Figure: Example encoding of invariant using input1 and input2 as
premise, and actual as consequent, i.e.
“input1 & input2 -> actual”
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Incorporating Monitor Models into original Model

Once we have built monitor models for our putative invariants, we
register them to be interfaced with the original model in Reactis.

Can’t use... :(

But now we have a “new” design model, the original plus some
new monitor models. Can we repeat the procedure?
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Overall Requirement Extraction Process

Convert
Invariants to

Monitor Models

Generate
Test Cases

Infer
Invariants

Instrument Design
Model with

Monitor Models

Valid
Requirements

Design
Model

terminate
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Overview of Experiments

The following types of experiments were run:

Single iteration

Run full coverage
Run partial coverage

Second iteration

Run full coverage with second iteration, using monitor models
Run partial coverage with second iteration

This is just generating a second batch of randomized runs,
and aggregating them with the first batch

Each experiment is done 5 times.
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Raw Results

Full

Run # Iter 1 # Invalid Net Iter 2 # Invalid Net
1 26 8 18 40 1 39
2 34 6 28 40 2 38
3 30 9 21 38 1 37
4 33 7 26 42 1 41
5 34 7 27 38 0 38

Avg 31.4 7.4 24 39.6 1 38.6

Partial

Run # Iter 1 # Invalid Net Iter 2 # Invalid Net
1 19 11 8 29 13 16
2 22 11 11 27 10 17
3 26 12 14 34 9 25
4 26 13 13 32 15 17
5 25 6 19 35 3 32

Avg 23.6 10.6 13 31.4 10 21.4
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Other Statistics

We’ve computed several statistics on the results, as well as keeping
the raw results:

Total fraction of recovered invariants

From estimated ground truth - formed by aggregating all
invariants found to not be invalid over any experiment
Estimation found 42 true invariants

False Positive (FP) and False Negative (FN) rates

Jaccard similarity between invariant sets

Unlike the other measures, this looks at similarity between
invariant sets, so as to compare how similar any two test runs
are.
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Fraction Total, FP, and FN numbers

Full

Run # Tot Frac1 FP1 FN1 Tot Frac2 FP2 FN2

1 0.43 0.31 0.57 0.93 0.03 0.07
2 0.67 0.18 0.33 0.90 0.05 0.10
3 0.50 0.30 0.50 0.88 0.03 0.12
4 0.62 0.21 0.38 0.98 0.02 0.02
5 0.64 0.21 0.36 0.90 0.00 0.10

Avg 0.57 0.24 0.43 0.92 0.03 0.08

Partial

Run # Tot Frac1 FP1 FN1 Tot Frac2 FP2 FN2

1 0.19 0.58 0.81 0.38 0.45 0.62
2 0.26 0.50 0.74 0.40 0.37 0.60
3 0.33 0.46 0.67 0.60 0.26 0.40
4 0.31 0.50 0.69 0.40 0.47 0.60
5 0.45 0.24 0.55 0.76 0.09 0.24

Avg 0.31 0.46 0.69 0.51 0.33 0.49
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Jaccard Similarity

Summary

Formally, the Jaccard Similarity of two sets A and B is defined to
be

J (A,B) =
|A ∩ B|
|A ∪ B|

A measure of set overlap, with values ranging from 0 (no overlap)
to 1 (totally equivalent sets).

Why it’s a useful metric for us

We’d like to argue that any given run produces “roughly the same”
set of invariants to another run. This is hopefully true for our
experiments, but not for our baselines (which are more random).
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Jaccard Statistics

full1 0 1 2 3 4
0 1 0.53 0.86 0.52 0.67
1 1 0.63 0.64 0.72
2 1 0.62 0.71
3 1 0.61
4 1

full2 0 1 2 3 4
0 1 0.88 0.85 0.90 0.83
1 1 0.92 0.88 0.81
2 1 0.86 0.83
3 1 0.88
4 1

part1 0 1 2 3 4
0 1 0.46 0.47 0.62 0.35
1 1 0.47 0.60 0.58
2 1 0.59 0.43
3 1 0.52
4 1

part2 0 1 2 3 4
0 1 0.74 0.52 0.74 0.50
1 1 0.45 0.70 0.48
2 1 0.56 0.63
3 1 0.48
4 1

part1 part2 full1 full2
Min 0.35 0.45 0.52 0.81
Avg 0.51 0.58 0.65 0.87
Max 0.62 0.74 0.86 0.92
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Contributions

First known approach of applying data mining to requirement
extraction

Usage of monitor models allow for automatic validation of
proposed requirements/invariants

Established framework, and show benefits of structural
coverage and iteration to performance
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Future Work

Assess relative completeness of modeling invariants using
association rules - are any interesting classes of invariants
undescribable?

Temporal invariants [YE06]:

“Within 5 time units of pressing the button, the alarm will
sound.”

Will require looking at relations between instances of test data
- no longer independent
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