Leveraging User-Session Data to
Support Web Application Testing

Authors: Sebastian Elbaum, Gregg Rotheermal,
Srikanth Karre, and Marc Fisher |l

Presented By:
Rajiv Jain

Outline

Introduction

Related Work

Testing Techniques
Experiment and Results
Additional Considerations
Conclusion

What is a Web Application?

Client
Browser

Web
Server

Request

Response
(static page)

Scripts and

Application Database

Server

Server

Request for
page generation

Response

(dynamic page)

Dynamically
generated page

SQL Command

Result Set

[Finish generating dynamic page]

Introduction

* Web applications
— Can have large numbers of users
— Change rapidly
— Multi-tiered architectures
* Similar to GUIs
— Event and user driven

— Conventional testing techniques may not work

Related Work

* Web Testing Techniques
— Validation / Static analysis
— Capture + replay tools (Selenium)

— Conventional white-box testing techniques
* Unit testing + integration testing
e Dataflow
 State-based
* No work on fault detection, only coverage

White Box Testing Techniques

* Ricca and Tonella
— Models web application as graph
— Nodes = Web objects
— Edges = Relationships between objects
— Test requirements and cases extracted from graph

— Requires test engineer to create test cases

White Box Testing Techniques

 Ricca and Tonella

Dynamic Page |

BookDetail
include ed .
(invalid quantity) el include
Form Form
input: quantity input:rating
e2
submit
(valid quantity)
Dynamic Page

ShoppingCart

White Box Testing Techniques

e Ricca and Tonella-1 (WB-1)
— Tests all edges
— Uses linearly independent paths
— lgnores circular links

* Ricca and Tonella-2 (WB-2)

— Boundary values used as input
— Each condition / All condition

User-Session Testing Techniques

User session is a TCP session

Session is made up of several requests
Request = URL + Name-value pairs
Transparently collect several user sessions
Uses sessions used to create test cases

User-Session Testing Techniques

* Direct Reuse of User Sessions (US-1)
— Analogous to a capture replay tool

 Combining Different User-Sessions (US-2)

— Randomly combines two user-sessions with
overlapping requests

e User Sessions with Form modifications (US-3)

— Test cases randomly delete one value character
* One case per name-value pair
* One case modifying all name-value pairs

Hybrid Testing Techniques

e Combines user-session and white box tests
e Hybrid 1 (HYB-1)
— Match user-sessions to requirements in WB-1/2

— If unable to match sessions to requirement,
requirement is ignored

e Hybrid 2 (HYB-2)

— Expands hybrid-1 by creating cases for unmatched
requirements

Experiment Setup

* Research Questions
— How effective are the techniques

— Does technique appropriateness vary with fault
type?

— Relationship between number of user sessions and
test suite effectiveness

* Independent Variable = 7 test techniques
* Dependent Variable = Coverage, Fault Detection

Experiment Setup

* Test subject is an online bookstore

— Implemented in Perl (67 functions, 399 blocks)
— Uses MySQL (7 tables)
— Hosted on a Apache web server

* Fault seeding was used
— 50 “realistic” faults added by 2 grad students
 Scripting faults
* Form faults
* Database query faults

Experiment Setup

Metric WB-1 | WB-2 | US-1 | US-2 | US-3 | HYB-1 | HYB-2
Test Suite Size 28 64 85 84 407 1004 1089
Requests 99 241 1975 | 1919 | 2742 1428 1397

 Test Suite Creation
— White box

* 75 hours spent creating the representation model
* Completed prior to fault seeding

— User-session

e 73 users navigated the website using IE
* Sessions were recorded with Apache/Javascript

— Oracle

* Web application output prior to fault seeding

Results

Metric WB-1 WB-2 ‘ US-1 US-2 US-3 HYB-1 HYB-2
abs | %o |abs | %o | abs | % | abs | % [abs | % | abs | % | abs | %
Block Coverage 263 | 66 | 306 | 76§ 263 | 66 | 255 | 64 | 288 | 72| 260 | 65 | 270 | 68
Function Coverage | 65 | 97| 66 | 99 65 [97| 64 | 96| 65 [97| 65 | 97 | 64 | 99
Faults Detected 22 104 | 24 |8 23 |56 | 23 [96| 26 |63 23 | 956 | 23 | 96
Technique Blocks Functions Faults
Combination abs | % | abs | % | abs | %
(WB-2NUS-3) | 273 | 68 | 65 97 23 | 54
(WB2—-US-3) | 32 | 8 | 1 | 2 | 2 |5
(US-3 — W B-2) 14 4 0 0 4 9
(WB-2UUS-3) | 319 | 80 | 66 99 29 | 67
Faults ranked in tiers
1-5 6-10 11-15 16-20 Rest
Average sessions affected | 98% (83) | 81% (69) | 33% (28) | 1% (1) 0% (0)
WB-1 detects 100% (5) | 80% (4) | 60% (3) | 40% (2) | 40% (16)
WB-2 detects 100% (5) | 60% (3) 40% (2) | 40% (2) | 50% (20)

Threats to Validity

Need to study additional websites

Experiment users may not be representative
of normal users

No comparison to other white box techniques

Tester may not have implemented white box
testing properly

Fault seeding may be biased

Uneven test suite size between techniques

Additional Considerations

* Web-Application State

— QOutput depends on more than URL, name-value pairs
— Test cases have different meaning in different states

* Non-Determinism
— |ldentical sets of input can produce different outputs

* Managing Evolving Test Suites
— Over time large number of user sessions accumulated

— Remove redundant cases my keeping same function,
page, block coverage

Conclusion

* Pros
— New technique for web-testing
— Appears to complement existing techniques
— Not dependent on underlying technology
— Little human effort required

* Cons
— More experimentation needed

— Requires stable application...good for beta testing
— Practicality?

Future Work

 Combining traditional techniques with user-
session tests

* Filtering and reducing large amounts of user-
sessions

* Costs of this technique versus others

Questions

?

