
David Chays, Saikat Dan, Phyllis G. Frankl,

Filippos I. Vokolos, Elaine J. Weyuker

Sonia Ng

November 17, 2009

1

A Framework for Testing Database
Applications

Introduction

2

Why is Database (DB) testing important?
Central role in operations of modern organizations
Need to manage large amounts of data while still:

Protecting the integrity of the data

Relieving the user from low-level details

But, relatively little attention has been given to this

Solution proposed:
Develop a systematic, partially-automatable tool to test DB’s

Introduction

3

Aspects to the correctness of a database system:
Does the application program behave as specified?
Does the database schema correctly reflect real world data?
Are security and privacy protected appropriately?
Are the data in the database accurate?
Does the DBMS perform all insertions, deletions and updates?

The paper focuses on the correctness of DB applications
Also, restricting attention to relational databases

Introduction

4

Outline
Background and terminology
Issues arising in testing database applications and the approach
Overview of the tool
Further implementation details
Example illustrating the capabilities of the tool
Comparison of the approach to other commercial tools
Directions for on-going work

Background and Terminology

5

Relational databases and SQL
Relations often thought of as tables
Relation schema = relation name and attributes (columns)

In other words, the structure of the table

Attributes = Has a name (Ai) and a domain/type (dom(Ai))
Domains = must be atomic types. Not complex types
Relation/relation state = a set of tuples at a specific time

Each set of tuples is an element of the Cartesian product dom(A1)X…
dom(An)

Relational database schema = set of relation schemas with a set
of integrity constraints

Background and Terminology

6

Types of constraints:
Domain constraints
Uniqueness constraints
Not-NULL constraints
Referential integrity constraints (foreign key constraints)
Semantic integrity constraints

SQL
Language used to define and manipulate relational databases
Semi-declarative language

Expressing what should be done rather than how

Background and Terminology

7

Figure 1: A database schema definition in SQL

Issues in Testing DB Applications

8

We will use these specifications in order to outline issues:
Input:

customer’s ID, name of telephone feature

Return:
 0 = ID number or feature name is invalid

1 = customer’s location and feature compatibility approved. Feature
added, billing table updated, sent out notice

2 = customer lives in area where feature is not available

3 = Feature is available in the area but is incompatible with subscribed
features

Issues in Testing DB Applications

9

Role of DB state
It’s not just about input and output. The state of the DB must be
considered.

Approaches to deal with DB state:
1. Ignore it
2. Consider DB state as an aspect of the environment
3. Treat it as part of the input/output spaces

Issues in Testing DB Applications

10

Problems:
Controllability
Observability

Eg: Adding a new feature gives rise to several test cases:
Feature already subscribed
Not available in the area
Not compatible with already subscribed features
Available in the area and compatible
Customer has no features at all

Issues in Testing DB Applications

11

Populating the DB
Live data
Synthetic data

Synthetic:
Issues with data population. Must produce valid and interesting
data

Design of the Tool

12

Design of the Tool

13

Design of the Tool

14

Implementation of the Tool

15

Base the tool on PostgreSQL

PostgreSQL parser can create a parse tree with all relevant
information

Might be inconvenient/inefficient during test generation
Location in tree depends on exact syntax of schema definition

So, designed a data structure that brings all the associated
information into one place

Modified parser so that it builds the data structure as it parses
the schema definition

Implementation of the Tool

16

Implementation of the Tool

17

After parsing schema, user is queried for input files
Annotations in input files:

choice_name
choice_prob
choice_freq
null_prob
null_freq

For each attribute, an array “data groups” is dynamically
created to show annotations

This contains a pointer to array “values” that stores actual data
values

Implementation of the Tool

18

For tables with constraints made up of multiple attributes:
Look at the combination rather than individual value
Array called “composite attribute records” is used

Assessing size limits. Factors:
Number of attributes
Attribute sizes
Number of composite constraints
Amount of memory

Example

19

Example

20

Related Work

21

With the exception of a paper by Davies, Beynon, and Jones,
there has not been an approach specifically targeted towards
DB testing

This technique = related to specification-based test
generation

Using category-partition technique

Conclusions and Future Work

22

Focused on: “populating a database with meaning data that
satisfies constraints”
Identified issues that make testing DB applications different
from other software systems
Described the tool/approach with examples
Determined size limitations
Extend work by:

Handle domain constraints and semantic constraints
Handle constraints that are not part of the schema
Including “boundary values” or other “special values” that are
more fault-prone

