

Clustering Test Cases to Achieve Effective & Scalable Prioritisation Incorporating Expert Knowledge

Yuening Hu University of Maryland, College Park

ynhu@cs.umd.edu

Nov. 24, 2009

Outline

- Background
- Motivation
- Framework
 - Clustering
 - Clustering-based Prioritisation
 - Analytic Hierarchy Process
 - Evaluation
- Experiments & Analysis
- Related Work
- Conclusions

Background

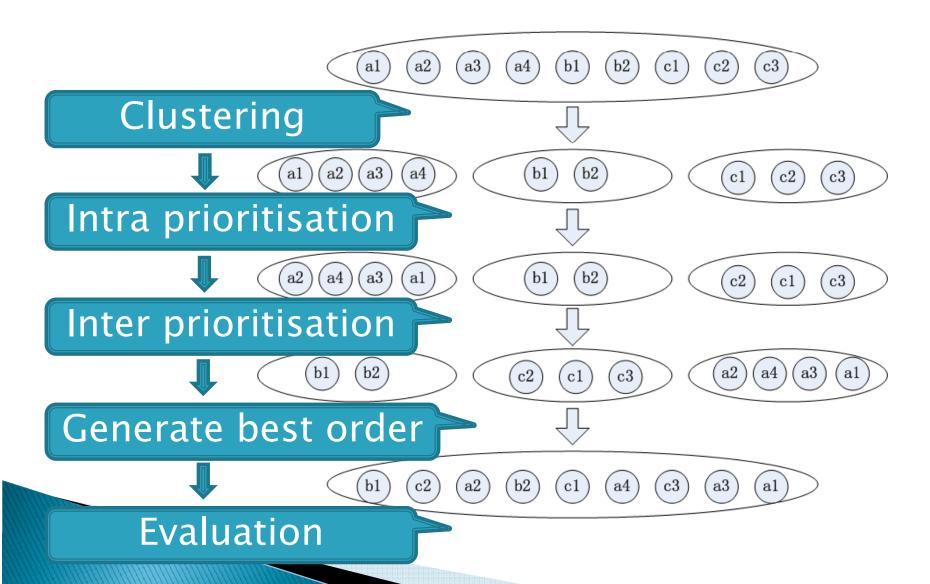
- Test case prioritisation
 - Regression test
 - An efficient ordering of test cases
- Ideal ordering
 - Reveal faults earliest
 - Not known in advance

Background

- Available criteria
 - Structural coverage
 - Requirement priority
 - Mutation score
- Powerful expert judgement
 - Human tester
 - Rich domain knowledge
 - Human guidance to avoid bias
 - Techniques: Analytic Hierarchy Process

Motivation

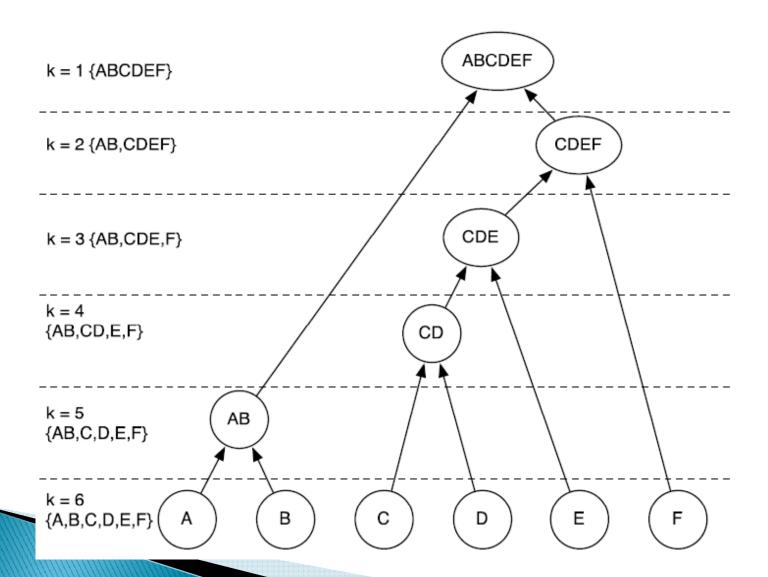
- Analytic Hierarchy Process (AHP)
 - Assumption: Human involvement
 - → prioritisation improvement
 - Pair-wise comparison
 - Scalability challenges: 100 meaningful comparisons
 - Usually much more than 100


AHP-based prioritisation

Clustering to control the number of comparisons Expert-guided prioritisation

Outline

- Background
- Motivation
- Framework
 - Clustering
 - Clustering-based Prioritisation
 - Analytic Hierarchy Process
 - Evaluation
- Experiments & Analysis
- Related Work
- Conclusions

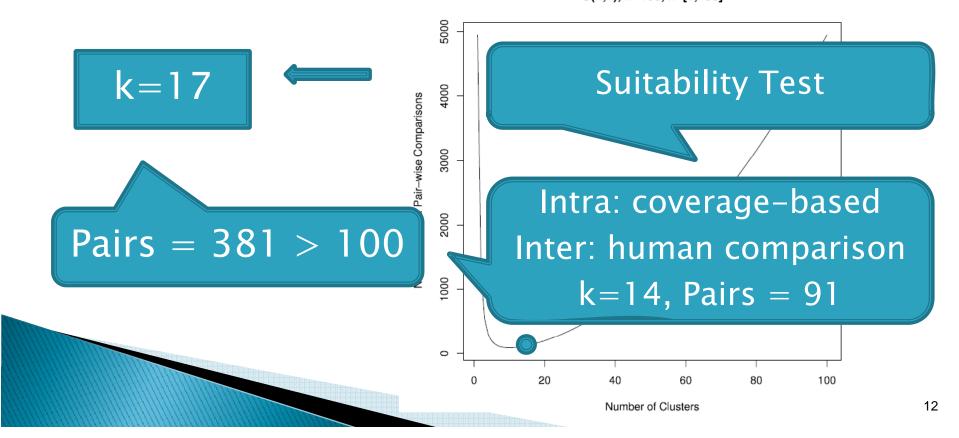

Framework


Clustering

- Ideal clustering criterion
 - Similarity of detected faults
- Used clustering criterion
 - One bit per statement: 1/0
 - Binary string of each test cases
 - Hamming distance

Clustering

Framework



Clustering Based Prioritisation

- Interleaved Clusters Prioritisation (ICP)
 - Intra-cluster prioritisation
 - Inter-cluster prioritisation
 - Comparison limit: 100 pairs

Clustering Based Prioritisation

- Interleaved Clusters Prioritisation (ICP)
 - n test cases, k clusters
 - Pairs: k(k-1)/2 + k(n/k)(n/k-1)/2

- Analytic Hierarchy Process, AHP
 - Not transitive
 - Ratio-based

p_{ij}	Preference
1	i is equally preferable to j
3	i is slightly preferable over j
5	i is strongly preferable over j
7	i is very strongly preferable over j
9	i is extremely preferable over j

Comparison Matrix M

$$\forall i (1 \le i \le n) \forall j (1 \le j \le n \land i \ne j), M(i, j) = p_{ij}$$

$$M(i, i) = 1 (1 \le i \le n).$$

Column normalized M

$$M'(i,j) = \frac{M(i,j)}{\sum_{1 \le k \le n} M(i,k)}$$

Priority weighting vector

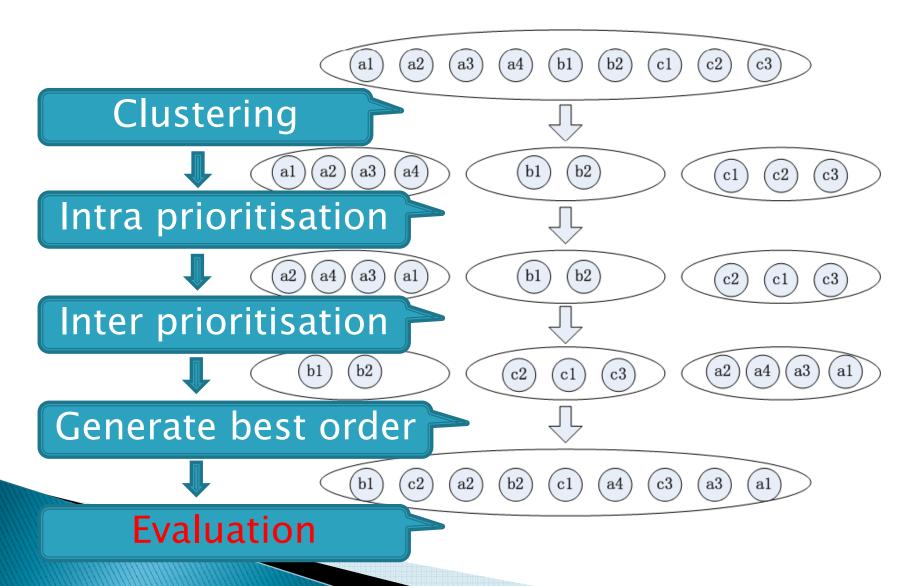
$$E_i = \frac{\sum_{1 \le k \le n} M(k, i)}{n}$$

- Ideal User Model
 - tA detected nA faults
 - tB detected nB faults

Condition	p_{AB}	Description			
$n_A = n_B$	1	Equal			
$n_A > 0$ and $n_B = 0$	7	Very Strongly prefer t_A			
$n_A > 0, n_B > 0, n_A \ge 3n_B$	9	Extremely prefer t_A			
$n_A > 0, n_B > 0, n_A \ge 2n_B$	7	Very Strongly prefer t_A			
$n_A > 0, n_B > 0, n_A \ge n_B$	5	Strongly prefer t_A			
$p_{BA} = \frac{1}{p_{AB}}$					

- Human Error Model
 - Only type 1 ~ 6 considered

Type	Original	Error
1	$p_{AB} > 1$	$p'_{AB}=1$
2	$p_{AB} < 1$	$p'_{AB} = 1$
3	$p_{AB} > 1$	$p'_{AB} < 1$
4	$p_{AB} < 1$	$p'_{AB} > 1$
5	$p_{AB}=1$	$p'_{AB} > 1$
6	$p_{AB}=1$	$p'_{AB} < 1$
7	$p_{AB} > 1$	$p'_{AB} > 1$ and $p'_{AB} \neq p_{AB}$
8	$p_{AB} < 1$	$p'_{AB} < 1$ and $p'_{AB} \neq p_{AB}$


Pair-wise comparison

Test Case		Branch 2 (Fault 2)		
t_1	X	X	X	
t_2	X	X		
t_3				X

▶ (t1, t2, t3) or (t1, t3, t2)?

- Single criterion hierarchy: ICPs
 - Pair-wise comparison from the human expert
- Multi criteria hierarchy: ICPm
 - Pair-wise comparison
 - Coverage-based prioritisation: scale of 3
 - Preference Value: {9, 7, 5, 3, 1, 1/3, 1/5, 1/7, 1/9}

Framework

Evaluation

Average Percentage of Fault Detection (APFD)

$$APFD = 1 - \frac{TF_1 + \dots + TF_m}{nm} + \frac{1}{2n}$$

- T: n test cases; F: m faults
- T': the ordered T
- TFi: the order of the first test case reveal the ith fault

Outline

- Background
- Motivation
- Framework
 - Clustering
 - Clustering-based Prioritisation
 - Analytic Hierarchy Process
 - Evaluation
- Experiments & Analysis
- Related Work
- Conclusions

Experimental Setups

- Subjects
 - From Software Infrastructure Repository (SIR)

Program	Test Suite	(Avg.) TS Size	LOC
printtokens	4	317.00	726
schedule	4	225.25	412
space	4	158.50	6,199
gzip	1	212	5,680
sed	1	370	14,427
vim	1	975	122,169
bash	1	1061	59,846

▶ RQ1: Effectiveness: ICP V.S. OP, SC

Subject	sche	dule		
Test Suite	1	2	3	4
OP	0.991	0.995	0.993	0.993
ICP_S	0.824	0.917	0.952	0.913
SC	0.806	0.865	0.782	0.844

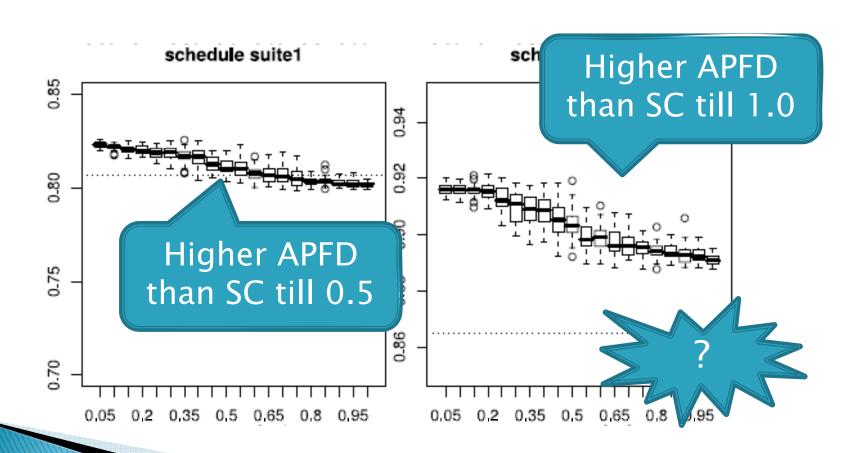
OP: Optimal Ordering

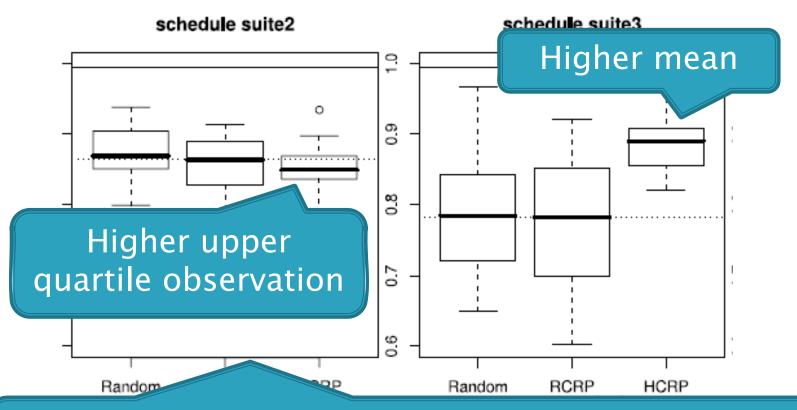
SC: Statement Coverage

ICPs: ICP with single crit

OP > ICPs > SC

RQ1: Effectiveness: ICP V.S. OP, SC


Subject			sche	dule	
Test Suite		1	2	3	OP > ICPm > SC
OP		0.991	0.995	0.993	0.
ICP _M P[H][C]	9 7 5 3 1 1/3 1/5 1/7	0.825 0.825 0.825 0.825 0.824 0.823 0.820 0.821	0.916 0.916 0.915 0.914 0.915 0.905 0.903 0.901	0.954 0.954 0.954 0.952 0.951 0.945 0.943 0.941	0.912 0.912 0.912 0.912 0.912 0.909 0.907 0.906 OP: Optimal Ordering SC: Statement Coverage-based ordering
S C	1/9	0.821	0.901	0.941	o.904 • ICPm: ICP with multi criteria


▶ RQ2: Configuration: human V.S. coverage

Subject Test Suite			sche	dule	Pref	erence value = 9
		1	2	3		ererree varies
OP		0.991	0.995	0.993	0.993	
ICP_{M} $p_{[H][C]}$	9 7 5 3 1 1/3 1/5 1/7 1/9	0.825 0.825 0.825 0.825 0.824 0.823 0.820 0.821 0.821	0.916 0.916 0.915 0.914 0.915 0.905 0.903 0.901 0.901	0.954 0.954 0.954 0.952 0.951 0.945 0.943 0.941	0.912 0.912 0.912 0.912 0.912 0.909 0.907 0.906 0.904	 OP: Optimal Ordering SC: Statement Coverage-bas ordering ICPm: ICP with
SC		0.806	0.865	0.782	0.844	multi criteria

- OP: Optimal Ordering
- SC: Statement Coverage-based ordering
- ICPm: ICP with multi criteria

▶ RQ3: Tolerance: highest tolerated error rate

Clustering with 14 clusters works

Any prioritisation better than random → improvement

HCKP: nierarcnical clustering random prioritisation

Suitability Test

- Suitability Test Automated ICP
 - Fault set: AR (Already Revealed)
 TBR (To Be Revealed)
 - Intra & Inter cluster prioritisation on AR set
 - structural coverage
 - Fault information in AR
 - Result > = traditional way
 - Pair-wise comparison will do better on TBR

Suitability Test

Suitability Test configuration

Program	Size of AR	Size of TBR	Mult. Ver.
printtokens	3	4	No
schedule	4	5	No
space	18	20	No
gzip	2	3	Yes
sed	6	4	Yes
vim	4	3	Yes
bash	4	9	Yes

Suitability Test

RQ4: Suitability: how accurately does the automated suitability test predict the successful result of ICP?

Subject		sche	dule	
Test Suite	1	2	3	4
OP	0.991	0.995	0.993	0.993
<i>NCS P</i> AR	0.899	0.974	0.922	0.949
<i>HCSP</i> AR	0.984	0.970*	0.972	0.986
<i>NCS P</i> TBR	0.831	0.880	0.854	0.883
ICP_M TBR	0.994	0.992	0.992	0.992

OP: Optimal Ordering

NCSP: No clustering/Statement Prioritisation

HCSP: Hierarchy clustering with Statement Prioritisation

ICPM SP with multi criteria

Experiment summary

- Effectiveness
- Configuration
- Tolerance
- Suitability

Outline

- Background
- Motivation
- Framework
 - Clustering
 - Clustering-based Prioritisation
 - Analytic Hierarchy Process
 - Evaluation
- Experiments & Analysis
- Related Work
- Conclusions

Related Work

- Other prioritisation techniques Rothermel
 - Branch-total/additional, Statement-total/additional
 Fault-Exposing Potential-total/additional
 - No single dominating criterion
- Other prioritisation + clustering usage -- Leon
 - Prioritizing by clustering execution profile
 - Better than coverage-based
- Other AHP applications human preference
 - Karlsson: requirement prioritisation
 - Finnie: project management
 - Douligeris: Quality of Service
 - Tonella: Case-Base Ranking in test case prioritisation

Conclusion

- Contributions
 - A novel use of clustering
 - A novel AHP-based prioritisation technique
 - A more realistic user model by an error model
 - An automated process of verifying effectiveness
- Future work
 - Different clustering criteria

Thanks for your attention! Questions?