Pairwise Testing

• Necessary condition
 - For each pair of input parameters, every combination of valid values of these two parameters be covered

• Example
 - Parameter A has values A1 and A2
 - Parameter B has values B1 and B2
 - Parameter C has values C1 and C2

• Discussion

Some Test Cases

• {\{(A1, B1, C1), (A1, B2, C2), (A2, B1, C3), (A2, B2, C1), (A2, B1, C2), (A1, B2, C3)}\}

• {\{(A1, B1, C1), (A1, B2, C1), (A2, B1, C2), (A2, B2, C3), (A2, B1, C1), (A1, B2, C2), (A1, B1, C3)}\}

• {\{(A1, B1, C1), (A1, B2, C1), (A2, B1, C2), (A2, B2, C2), (A2, B1, C1), (A1, B1, C2), (A1, B1, C3), (A2, B2, C3)}\}

Growth Terms

• Horizontal
 - Let T be a pairwise test set for parameters P1, P2, ..., Pn-1
 - Horizontal growth of T for parameter Pi is to extend each test in T by adding the value of Pi

• Vertical
 - After applying horizontal growth
 - Let T be a test set for P1, P2, ..., Pi
 - Let π be the set of tests not covered by T
 - The vertical growth of T according to π is to construct new tests for pairs in π and add them to T

Horizontal Growth

Algorithm IPG(\pi, p_i)

// T is a test set. But T is also treated as a list with elements in arbitrary order
// assume that the domain of pi contains values v1, v2, ..., and \nu_i
\pi = \{ \text{pairs between values of } p_i \text{ and values of } p_1, p_2, \ldots, p_{i-1} \};

if \(|T| \leq q\)
 \{ for \(1 \leq j \leq |T|\), extend the jth test in T by adding value v_j and remove from \(\pi\) pairs covered by the extended test; \}
else
 \{ for \(1 \leq j \leq q\), extend the jth test in T by adding value v_j and remove from \(\pi\) pairs covered by the extended test; for \(q < j \leq |T|\), extend the jth test in T by adding one value of \(p_i\) such that the resulting test covers the most number of pairs in \(\pi\), and remove from \(\pi\) pairs covered by the extended test; \}

Vertical Growth

Algorithm $IP_O.V(T, x)$

1. let T' be an empty set;
2. for each pair in π
3. \{
4. assume that the pair contains value w of p_k, $1 \leq k < i$, and value u of p_i;
5. if T' contains a test with "-" as the value of p_k and u as the value of p_i,
6. modify this test by replacing the "-" with w;
7. else
8. add a new test to T' that has w as the value of p_k, u as the value of p_i,
9. and "-" as the value of every other parameter;
10. \}
11. $T = T \cup T'$;