JavaDoc Cheat Sheet

Package Specification

The Package specification includes any specifications that apply to the package as a whole or to groups of classes in the package. It must include:

1. Executive summary

2. OS/Hardware Dependencies

3. References to any external specifications.

Package Example #1

This example demonstrates the Executive Summary (first 3 paragraphs) and OS/Hardware Dependencies (fourth paragraph).

	Package java.awt Description

Contains classes for creating user interfaces and for painting graphics and images. A user interface object such as a button or a scrollbar is called, in AWT terminology, a component. The Component class is the root of all AWT components. See Component for a detailed description of properties that all AWT components share.

Some components fire events when a user interacts with the components. The AWTEvent class and its subclasses are used to represent the events that AWT components can fire. See AWTEvent for a description of the AWT event model.

A container is a component that can contain components and other containers. A container can also have a layout manager that controls the visual placement of components in the container. The AWT package contains several layout manager classes and an interface for building your own layout manager. See Container and LayoutManager for more information.

Behavior of user interface components may be restricted by the underlying operating system. For example, Windows does not allow simultaneously displaying the caret position and selection highlight, while Solaris does. That is, in Windows, applying the setCaretPosition method to a text area causes any highlighted text to become unhighlighted, but in Solaris that method does not disturb a highlight.

Class/Interface Specification

This section applies to Java classes and interfaces. Each class and interface specification must include:

1. Executive summary

2. State Information

3. OS/Hardware Dependencies

4. Allowed Implementation Variances

5. Security Constraints

6. References to any External Secifications

	public class FileOutputStream
extends OutputStream
A file output stream is an output stream for writing byte data to a File or FileDescriptor object. Character data should be written using a Writer object attached to a FileOutputStream object.

FileOutputStream objects have essentially two states: (1) open and available for writing, and (2) closed. Attempting to write to a closed stream will result in a java.io.IOExeception being thrown.

While FileOutputStream objects have only two states, the behavior while the stream is open and available for writing may differ by platform and by implementation. Since a FileOutputStream object may be buffered either by the Java implementation or by the underlying operating system, errors writing to the file or file descriptor may only be exposed when flushing or closing the stream. Those stream write errors include but are not limited to:

· Storage medium is full

· Pipe to other process is broken

· File being written to is deleted by another process

In addition, the ability to create or write to a file or file descriptor may be constrained by a Security Manager. This means that the constructors may throw java.lang.SecurityException. See SecurityManager.checkWrite() for more information.

Field Specification

Each field specification must include:

1. What this field models

2. Range of valid values

3. Null Value.

Field Example #1

	Fields from java.awt.Rectangle

x

public int x

The x coordinate of one corner of this rectangle. Negative values are allowed for this field.

y

public int y

The y coordinate of one corner of this rectangle. Negative values are allowed for this field.

width

public int width

The width of this rectangle. When width is less than zero, Rectangle behavior is undefined.

The behavior of the following methods is undefined when either width or height is less than zero: add(), contains(), getBounds(), getSize(), grow(), inside(), intersection(), intersects(), reshape(), resize(), setBounds(), setSize(), translate(), and union().

height

public int height

The height of this rectangle. Rectangle behavior is undefined when height is less than zero.

Method Specification

This section applies to Java methods and constructors. Each method and constructor specification must include:

1. Expected Behavior

2. State Transitions

3. Range of Valid Argument Values

4. Null Argument Values

5. Range of Return Values

6. Algorithms Defined

7. OS/Hardware Dependencies

8. Allowed Implementation Variances

9. Cause of Exceptions

10. Security Constraints

Method Example #1

This example demonstrates the Expected Behavior, State Transitions (first paragraph) and Cause of Exceptions (second and following paragraphs).

	Method from java.util.BitSet

set

public void set(int index)

Sets the bit specified by the index to true. If the bit is already true, it will remain true.

If the index is less than zero, an IndexOutOfBoundsException will be thrown. If the BitSet object does not have index number of bits it will attempt to grow to include at least index number of bits. This resize operation will fail and throw an OutOfMemoryError if the Java system runs out of memory.

Parameters:

index - index for the bit to be set to true.

Throws:

java.lang.IndexOutOfBoundsException - if the specified index is negative.

Throws:

java.lang.OutOfMemoryError - if the BitSet object cannot grow to accommodate index number of bits.

TAGS

Required Tags
An @param tag is required for every parameter, even when the description is obvious.

The @return tag is required for every method that returns something other than void, even if it is redundant with the method description. (Whenever possible, find something non-redundant (ideally, more specific) to use for the tag comment.)

Order of Tags
Include tags in the following order:

* @author (classes and interfaces only, required)

* @version (classes and interfaces only, required)

* @param (methods and constructors only)

* @return (methods only)

* @exception (@throws is a synonym)

* @see
* @since
* @serial (or @serialField or @serialData)

* @deprecated
Referenced from:

http://java.sun.com/j2se/javadoc/writingapispecs/index.html
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
