
1

CMSC 435: Software
Engineering Section 0201

• Atif M. Memon (atif@cs.umd.edu)
• 4115 A.V.Williams building
• Phone: 301-405-3071
• Office hours

– Tu.Th. (11:00am-1:00pm)
• Don’t wait, don’t hesitate, do

communicate!!
– Phone
– E-mail
– Office hours
– Course discussion group

More Resources

• Class TA
– Ishan Banerjee
– ishan@cs.umd.edu
– Office location

• 4122 A.V.Williams building
– Office hours

• TBA

• Course page
– www.cs.umd.edu/~atif/teaching/spring2003

2

How Cars are Engineered (A
simple view)

• User requirements
– Engine power, all-wheel, seating, comfort, MP3 player!!

• Detailed design
– Blueprints, design documents

• Test design
– Simulation, prototyping

• Develop parts (components)
– Test each component
– Components may be reused
– Mass produced

• Assemble the car
– Test the car

• Front/side crash tests
• Stability tests

– Usability testing
• Feedback from drivers/passengers

In Pictures!!

3

But Seriously
• Features of many LEGO parts

– Modularity
– Reusability

• Each part can be used in different places
and ways

– Flexibility of design
– Compatibility

• With other LEGO sets

• Building-blocks

Similar Techniques Used by
Builders: Bridges

4

Detailed Design and
Specifications

Galvanized Bridge Wire for Parallel Wire
Bridge Cables. Recommended diameter .196 inch.

Galvanized Bridge Strand--consists of
several bridge wires, of various diameters
twisted together.

Galvanized Bridge Rope--consists of six
strands twisted around a strand core.

Parallel Wire Cable

Detail of Main Cable and Cable Band. The wrapping
wire is omitted at the right for clarity. Note the

closed construction and aluminum fillers.

More Detailed Design and
Specifications

5

Tacoma Narrows Bridge
Disaster

Back to Software
• Software uses some of the most
complex structures ever designed

• Need to apply/develop engineering
principles to/for software

• Software engineering is concerned
with theories, methods and tools
for professional software
development

6

Important: Team Work
• Most software is developed

– By teams of
• Designers
• Programmers
• Managers

• Social skills
– Trust other team members

• They will develop software components that you may
use

• Management skills
– Schedules
– Work distribution
– Budget

A Few Facts About Software
Today

• Software costs often dominate
system costs.
– The costs of software are often
greater than the hardware cost

• Software costs more to maintain
than it does to develop.
– For systems with a long life,
maintenance costs may be several
times development costs

7

Costs Involved
• Typically

– 60% of costs are development costs,
– 40% are testing costs.
– For custom software, evolution costs often

exceed development costs
• Costs vary depending on the type of

system being developed and the
requirements of system attributes such
as performance and system reliability

• Distribution of costs depends on the
development method that is used

We will Engineer Software
• But what is software?

– Computer programs and
– Associated documentation

• Software products may be
developed for
– A particular customer or
– A general market

8

Role of a Software Engineer
• Software engineers should adopt a
systematic and organised approach
to their work and use appropriate
tools and techniques depending on
the problem to be solved, the
development constraints and the
resources available

Attributes of Good Software
• Should deliver the required functionality

and performance
• Maintainability

– Software must evolve to meet changing needs
• Dependability

– Software must be trustworthy
• Efficiency

– Software should not make wasteful use of
system resources

• Usability
– Software must be usable by the users for

which it was designed

9

Software Processes
• What is a Software Process?

– A set of activities whose goal is the
development or evolution of software

• Some Activities:
– Specification

• what the system should do and its development
constraints

– Development
• production of the software system

– Validation
• checking that the software is what the customer

wants
– Evolution

• changing the software in response to changing
demands

Software Process Models
• A simplified representation of a software

process, presented from a specific perspective
• Examples of process perspectives are

– Workflow perspective
• sequence of activities

– Data-flow perspective
• information flow

– Role/action perspective
• who does what

• Generic process models
– Waterfall
– Evolutionary development
– Formal transformation
– Integration from reusable components

10

Generic Software Process
Models

• The waterfall model
– Separate and distinct phases of specification

and development
• Evolutionary development

– Specification and development are interleaved
• Formal systems development

– A mathematical system model is formally
transformed to an implementation

• Reuse-based development
– The system is assembled from existing

components

Waterfall Model
Requirements
Definition

Requirements
Definition

System &
Software Design

System &
Software Design

Implementation
& Unit Testing

Implementation
& Unit Testing

Integration &
System Testing
Integration &
System Testing

Operation &
Maintenance
Operation &
Maintenance

11

Waterfall Model Problems
• Inflexible partitioning of the
project into distinct stages

• This makes it difficult to respond
to changing customer requirements

• Therefore, this model is only
appropriate when the requirements
are well-understood

Evolutionary Development
• Exploratory development

– Objective is to work with customers
and to evolve a final system from an
initial outline specification. Should
start with well-understood
requirements

• Throw-away prototyping
– Objective is to understand the system
requirements. Should start with poorly
understood requirements

12

Evolutionary Development

Outline
Description
Outline

Description

SpecificationSpecification

DevelopmentDevelopment

ValidationValidation

Initial
Version
Initial
Version

Intermediate
Versions

Intermediate
Versions

Intermediate
Versions

Intermediate
Versions

Final
Version
Final

Version

Concurrent
Activities

Evolutionary Development
• Problems

– Lack of process visibility
– Systems are often poorly structured
– Special skills (e.g. in languages for rapid

prototyping) may be required
• Applicability

– For small or medium-size interactive systems
– For parts of large systems (e.g. the user

interface)
– For short-lifetime systems

13

Formal Systems Development
• Based on the transformation of a
mathematical specification through
different representations to an
executable program

• Transformations are ‘correctness-
preserving’ so it is straightforward
to show that the program conforms
to its specification

• Embodied in the ‘Cleanroom’
approach to software development

Formal Systems Development

Requirements
Definition

Requirements
Definition

Formal
Specification

Formal
Specification

Formal
Transformation

Formal
Transformation

Integration &
System Testing
Integration &

System Testing

14

Formal Transformations

Formal
Specification

Formal
Specification

Executable
Program

Executable
ProgramR3R3R2R2R1R1

P1P1 P2P2 P3P3 P4P4

T1 T2 T3 T4

Formal Transformations

Proofs of Transformation Correctness

Formal Systems Development
• Problems

– Need for specialised skills and training
to apply the technique

– Difficult to formally specify some
aspects of the system such as the
user interface

• Applicability
– Critical systems especially those where
a safety or security case must be
made before the system is put into
operation

15

Reuse-oriented Development
• Based on systematic reuse where

systems are integrated from existing
components or COTS (Commercial-off-
the-shelf) systems

• Process stages
– Component analysis
– Requirements modification
– System design with reuse
– Development and integration

• This approach has received a lot of
attention recently

Reuse-oriented Development
Requirements
Specification
Requirements
Specification

Component
Analysis

Component
Analysis

Requirements
Modification

Requirements
Modification

System
Validation
System
Validation

System Design
With Reuse

System Design
With Reuse

Development
& Integration
Development
& Integration

16

Process Iteration
• System requirements ALWAYS
evolve in the course of a project so
process iteration where earlier
stages are reworked is always part
of the process for large systems

• Iteration can be applied to any of
the generic process models

• Two (related) approaches
– Incremental development
– Spiral development

Incremental Development

• Rather than deliver the system as a
single delivery, the development and
delivery is broken down into increments
with each increment delivering part of
the required functionality

• User requirements are prioritized and
the highest priority requirements are
included in early increments

• Once the development of an increment is
started, the requirements are frozen
though requirements for later increments
can continue to evolve

17

Incremental Development
Define Outline
Requirements

Define Outline
Requirements

Assign Requirements
to Increments

Assign Requirements
to Increments

Design System
Architecture

Design System
Architecture

Develop System
Increment

Develop System
Increment

Validate
Increment
Validate

Increment
Integrate
Increment
Integrate
Increment

Validate
System

Validate
System

Final
Version
Final

Version
System Incomplete

Incremental Development
Advantages

• Customer value can be delivered
with each increment so system
functionality is available earlier

• Early increments act as a prototype
to help elicit requirements for later
increments

• Lower risk of overall project failure
• The highest priority system
services tend to receive the most
testing

18

Extreme Programming
• New approach to development based
on the development and delivery of
very small increments of
functionality

• Relies on constant code
improvement, user involvement in
the development team and pairwise
programming

Spiral Development
• Process is represented as a spiral rather

than as a sequence of activities with
backtracking

• Each loop in the spiral represents a
phase in the process.

• No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required

• Risks are explicitly assessed and resolved
throughout the process

19

Spiral Model of the Software
Process

Risk
a nalysis

Risk
ana lysis

Risk
analysis

Risk
anal ysis P roto-

type 1

Prototype 2
Prototyp e 3

Opera-
tional
protoype

Concept o f
Operation

S imulations, models, benchmarks

S /W
requi rements

Requi rement
valid ation

Design
V&V

Produc t
design Detailed

design

Code
Uni t t es t

Inte gr ation
testAccepta nce

testServ ice Develop, verify
ne xt-level product

Evaluate alt ernatives
identify, resolve risks

Determine ob jectiv es
alternatives and

constraint s

P lan next p hase

Integration
and test p lan

Deve lopment
plan

Requirements plan
Li fe-cycle plan

REVIEW

Spiral Model Sectors
• Objective setting

– Specific objectives for the phase are
identified

• Risk assessment and reduction
– Risks are assessed and activities put in place

to reduce the key risks
• Development and validation

– A development model for the system is
chosen which can be any of the generic
models

• Planning
– The project is reviewed and the next phase

of the spiral is planned

20

Software Specification
• The process of establishing what
services are required and the
constraints on the system’s
operation and development

The Requirements Engineering
Process

Feasibility
Study

Feasibility
Study

Requirements
Elicitation & Analysis

Requirements
Elicitation & Analysis

Requirements
Specification
Requirements
Specification

Requirements
Validation

Requirements
Validation

Requirements
Document

Requirements
Document

User & System
Requirements

User & System
Requirements

System
Models
System
Models

Feasibility
Report

Feasibility
Report

21

Software Design and
Implementation

• The process of converting the system
specification into an executable system

• Software design
– Design a software structure that realises the

specification
• Implementation

– Translate this structure into an executable
program

• The activities of design and
implementation are closely related and
may be inter-leaved

The Software Design Process

Architectural
Design

Architectural
Design

Requirements
Specification
Requirements
Specification

Abstract
Specification
Abstract

Specification

Interface
Design

Interface
Design

Component
Design

Component
Design

Data
Structure
Design

Data
Structure
Design

Algorithm
Design

Algorithm
Design

Algorithm
Specification
Algorithm

Specification

System
Architecture

System
Architecture

Software
Specification
Software

Specification

Interface
Specification
Interface

Specification

Component
Specification
Component

Specification

Data
Structure

Specification

Data
Structure

Specification

Design Activities

Design Products

22

Design Methods
• Systematic approaches to
developing a software design

• The design is usually documented as
a set of graphical models

• Possible models
– Data-flow model
– Entity-relation-attribute model
– Structural model
– Object models

Programming and Debugging
• Translating a design into a program
and removing errors from that
program

• Programming is a personal activity -
there is no generic programming
process

• Programmers carry out some
program testing to discover faults
in the program and remove these
faults in the debugging process

23

The Debugging Process

Locate
Error

Locate
Error

Design
Error
Repair

Design
Error
Repair

Repair
Error

Repair
Error

Retest
Program
Retest
Program

Software Validation
• Verification and validation is intended to

show that a system conforms to its
specification and meets the requirements
of the system customer

• Involves checking and review processes
and system testing

• System testing involves executing the
system with test cases that are derived
from the specification of the real data
to be processed by the system

24

The Testing Process
Unit

Testing
Unit

Testing

Module
Testing
Module
Testing

Sub-system
Testing

Sub-system
Testing

System
Testing
System
Testing

Acceptance
Testing

Acceptance
Testing

Component
Testing

Integration
Testing

User
Testing

Testing Stages
• Unit testing

– Individual components are tested
• Module testing

– Related collections of dependent components are
tested

• Sub-system testing
– Modules are integrated into sub-systems and tested.

The focus here should be on interface testing
• System testing

– Testing of the system as a whole. Testing of
emergent properties

• Acceptance testing
– Testing with customer data to check that it is

acceptable

25

Testing Phases
Requirements
Specification
Requirements
Specification

System
Design

System
Design

System
Specification

System
Specification

Detailed
Design

Detailed
Design

Module &
Unit Code
& Tests

Module &
Unit Code
& Tests

Sub-system
Integration

Test

Sub-system
Integration

Test

System
Integration

Test

System
Integration

Test
Acceptance

Test
Acceptance

Test

ServiceService

Acceptance
Test Plan

Acceptance
Test Plan

Sub-system
Integration
Test Plan

Sub-system
Integration
Test Plan

System
Integration
Test Plan

System
Integration
Test Plan

Software Evolution
• Software is inherently flexible and
can change.

• As requirements change through
changing business circumstances,
the software that supports the
business must also evolve and
change

26

System Evolution

Define
System

Requirements

Define
System

Requirements

New
System
New

System
Existing
Systems
Existing
Systems

Assess
Existing
Systems

Assess
Existing
Systems

Propose
System
Changes

Propose
System
Changes

Modify
Systems
Modify
Systems

