
qua l i t y t im e

I E E E S O FT W A R E 9 9

Editor:
Shari Lawrence

Pfleeger
Systems/Software

4519 Davenport St. NW
Washington, DC

20016-4415
s.pfleeger@ieee.org

New views of
mature ideas
on software
quality and

productivity.

adam po r te r
university of maryland

l aw r ence vo t ta
lucent technologies

What Makes
Inspections Work?

Recent reports in the literature contain many empir-
ical evaluations of software inspections. Here, Adam
Porter and Larry Votta summarize their findings, sug-
gesting results that are ready to be put into practice as well
as an agenda for further research. —Shari Lawrence
Pfleeger
SOFTWARE INSPECTIONS ARE CONSID-
ered a cheap and effective way to detect and remove
defects from software. One popular bibliography on
software inspections contains well over 200 entries,
many of which are case studies documenting in-
spections’ benefits. Still, many people believe that
the process can be improved and have thus proposed
alternative methods.

We reviewed many of these proposals and de-
tected a disturbing pattern: too often competing
methods are based on conflicting arguments. For ex-
ample, one community argues that groupware tech-
nology can greatly improve inspection meetings and
thus greatly improve overall inspection effectiveness.
At the same time, another community argues that
even well-conducted meetings discover few defects,
so meetings should be discarded altogether.

The existence of these and other competing views
indicates a serious problem: we have yet to identify
the fundamental drivers of inspection costs and ben-
efits. Without this information, we can’t tell if we
are building new methods based on faulty assump-
tions, evaluating new methods improperly, or inad-
vertently focusing on low-payoff improvements.
Furthermore, we will not get this information by
simply observing and comparing the performances
of different methods. Instead, we must get inside the
methods by using the scientific method to isolate the
behavior of different drivers.

To do this, we first built a taxonomy of the poten-
tial drivers of inspection costs and benefits. Then we
conducted a family of experiments to evaluate their
effects. We chose effort and interval, measured as cal-
endar time to completion, as our primary measures of
cost. Defects discovered per thousand lines of code
served as our primary measure of inspection benefits.

COST-BENEFIT DRIVERS. Many organizations use a
three-step inspection process: individual analysis,

team analysis, and repair. We suspect that the costs
and benefits of this process may be driven by several

mechanisms, both internal and external to itself:
♦ structure (how the steps of the inspection are

organized into a process);
♦ techniques (how each step is carried out);
♦ inputs (reviewer ability and code quality);
♦ context (interactions with other inspections,

project schedule, personal calendars); and
♦ technology (tool support).

EXPERIMENTS. We conducted a family of experiments
to understand how various factors affect inspection
costs and benefits.

Process structure. This study looked at the effect of
process structure. Prior to the study, we reviewed
and identified key differences in the structure of sev-
eral inspection methods, including Fagan inspec-
tions, active design reviews, N-fold inspections,
phased inspections, and two-person inspections. The
main structural differences between these methods
are the size of the review team, the number of teams,
and the strategy used to coordinate multiple teams.
One of our null hypotheses was that none of these
factors drives inspection effectiveness.

We ran an experiment (Adam Porter, Harvey Siy,
Carol Toman, and Lawrence G. Votta, “An
Experiment to Assess the Cost-Benefits of Code
Inspections in Large Scale Software Development,”
IEEE Transactions on Software Engineering, Vol. 23, No.
6, 1997) at Lucent Technologies on a project that was
developing a compiler and environment to support de-
velopers of the Lucent 5ESS telephone switching sys-
tem. The finished system contains about 75K lines of

Competing methods
show we have yet to
identify the fundamental
drivers of inspection
costs and benefits.

.

C++ code. The data collection phase ran for
18 months, during which time we observed
88 inspections. We selected the treatment
used during a given inspection by randomly

assigning the team size (one, two, or four re-
viewers), the number of inspection teams
(one or two), and—for two-team inspec-
tions—the coordination strategy: either in-
dependent inspections, or two sequential in-
spections with repair in between.

Surprisingly, none of the independent
variables had a significant effect on effec-
tiveness. Consequently, we suspect that
simply restructuring the inspection process
(the approach taken by most research in this
area) will not significantly increase effec-
tiveness. We also found that many of the
assumptions underlying contemporary
methods did not hold in practice. While in-
spections with one reviewer were less ef-
fective than those with two, inspections
with two reviewers were no less effective
than those with four (an argument for
smaller teams). Also, teams that reviewed
the same code unit found few common de-
fects (an argument against multiple-team,
sequential inspections).

Inspection effort appears to be driven
solely by the total number of reviewers par-
ticipating in the inspection. None of these
independent variables had a significant ef-
fect on interval. However, the premeeting
interval (time from start of inspection to the
meeting) of two-team, two-person inspec-
tions with repair in-between was about twice
as long (four weeks versus two weeks) as all
other premeeting intervals. Further investi-
gation showed that the time needed to
schedule the second inspection was respon-
sible for the delay. These findings suggest
that even simple types of coordination may
substantially increase a process’s interval.

Process inputs. The inspection perfor-
mances we’ve described show considerable
variation. This suggests that something
other than process structure strongly affects
inspection effectiveness. One obvious pos-
sibility is the differences in process inputs.
We investigated this by modeling variation
in the data as a function of process inputs
and process structure (Adam Porter, Harvey
Siy, Audris Mockus, and Larry Votta,
“Sources of Variation in Software
Inspections,” ACM Transactions on Software
Engineering Methodology, January 1998). Our
goal was to determine the relative effect of
process structure and process input on in-
spection effectiveness. We found that 50
percent of the variation could be explained
by the code’s size, its functionality, and the
reviewers who inspected it; the process
structure explained only 3 percent. We also
found that even when the variation due to
these inputs was factored out, process struc-
ture did not significantly affect effectiveness.
We interpret this to mean that how code is
constructed and analyzed has far more in-
fluence on effectiveness than does how the
process is structured.

For interval data, we found that the
code’s author, and the presence of certain
reviewers, explained 36 percent of the vari-
ation, while process structure explained
only 3 percent. The model for premeeting
interval was similar, but included the struc-
ture variable, Repair. That is, by factoring
out the variation due to process inputs, we
discovered an effect due to process struc-
ture (namely Repair). Our interpretation is
that process inputs (mostly the code unit’s
author) have a greater influence on inter-
val than process structure does.
Nevertheless, we found that inspection
processes involving multiple, sequential in-
spections, significantly lengthen interval.

These results reinforce our previous
findings—that recently proposed changes
to inspection process structure are largely
ineffective in improving effectiveness and,
in some cases, can require substantially
more effort and interval.

Inspection techniques. The two previous
studies suggest that better techniques for an-
alyzing documents may do more to improve
effectiveness than will better inspection

methods. There are two contexts in which a
review team analyzes a document: individu-
ally and cooperatively. Historically, team
analysis has been the focus of inspection re-
search. Some recent studies suggest that, in
practice, team analysis is not essential
(Lawrence G. Votta, “Does Every
Inspection Need a Meeting?” Proceedings
ACM SIGSOFT ’93 Symposium on
Foundations of Software Engineering, ACM,
New York, 1993).

Team analysis. Because meetings are ex-
pensive, it is important to determine exactly
how they contribute to inspections and
whether superior alternatives exist. From
the viewpoint of effectiveness, meetings are
essential if

♦ many faults are found during the
meetings and

♦ because of these meetings, more
faults are found than would be otherwise.

To help answer these questions, we ex-
amined three approaches to inspecting soft-
ware. The first two involve meetings, the
third does not.

♦ Preparation-Inspection (PI). Each re-
viewer individually analyzes the document
to become familiar with it. Afterward, the
team holds an inspection meeting to find
faults.

♦ Detection-Collection (DC). Each re-
viewer individually analyzes the document
to detect faults. The team then meets to
collect the defects found earlier and, if pos-
sible, find more.

♦ Detection-Detection (DD). Each
reviewer individually analyzes the docu-
ment to detect faults. Later, each reviewer
conducts fault detection a second time,
again individually.

We hypothesize that inspection meth-
ods such as DD, which eliminate meetings,
are at least as cost-effective as the PI and
DC methods, which rely heavily on them.
We expect this result because the benefit of
additional individual analysis, as provided
by the DD method, should be greater than
holding inspection meetings.

To evaluate this hypothesis, we de-
signed and conducted a controlled experi-
ment involving 21 graduate students in
computer science and 27 professional soft-
ware developers. (Adam Porter and Philip

qua l i t y t im e

1 0 0 NOVEMBER/DECEMBER 1997

.

Inspection effort
appears to be driven
solely by the number
of reviewers who
participate in the
inspection.

Johnson, “Assessing Software Review
Meetings: Results of a Comparative
Analysis of Two Experimental Studies,”
IEEE Transactions on Software Engineering,
Vol. 23, No. 3). We found that the meet-
ingless inspections found more defects than
did those with meetings, but that there was
no significant difference between the two
ways of having inspections with meetings.
We also found no significant difference be-
tween the DD and DC method in the first
phase of the inspection. Rather, the DD
method performed the best because it
found more new faults in the second phase.
Finally, we found no evidence that inspec-
tions with meetings found specific faults
with greater frequency than did the meet-
ingless inspections.

These results suggest that even well-
prepared-for meetings may find fewer de-
fects than do individuals working alone.
Although they cannot be justified on the
basis of defect discovery only, meetings do
have value in that they suppress false posi-
tives and let groups make decisions and co-
ordinate activities.

Individual analysis. Preparation is the first
step of the inspection process. Methods for
conducting this step have three compo-
nents: techniques, responsibilities, and a co-
ordination policy.

♦ Detection techniques range in pre-
scriptiveness from intuitive, nonsystematic
procedures such as ad hoc or checklist tech-
niques to explicit and highly systematic pro-
cedures such as correctness proofs.

♦ A reviewer’s individual responsibility
may be general, to identify as many defects
as possible, or specific, to focus on a limited
set of issues, such as ensuring appropriate
use of hardware interfaces, identifying
untestable requirements, or checking con-
formity to coding standards.

♦ Individual responsibilities may or
may not be coordinated among review team
members. When they are not coordinated,
all reviewers have identical responsibilities.
In contrast, reviewers in coordinated teams
have distinct responsibilities.

Reviewers frequently use ad hoc or check-
list defect detection methods. Ad hoc re-
viewers use nonsystematic techniques and are
assigned the same general responsibilities.

Checklist reviewers receive a list of items to
search for, usually derived from important
lessons learned during previous inspections
within a specific environment or domain.

We performed an experiment to test the
following hypothesis: that nonsystematic
techniques with general and identical re-
viewer responsibilities lead to overlap and
gaps in coverage, thereby lowering the
overall inspection effectiveness, but that
systematic approaches with specific, distinct
responsibilities reduce gaps and improve
coverage, thereby increasing the inspec-
tion’s overall effectiveness. To explore this
hypothesis we prototyped a set of defect-
specific techniques, which we called sce-
narios: collections of procedures for de-
tecting particular classes of defects. Each
reviewer executes a single scenario and all
reviewers coordinate to achieve broad cov-
erage of the document. We then conducted
a controlled experiment (Adam Porter,
Lawrence G. Votta, and Vic Basili,
“Comparing Detection Methods for
Software Requirement Inspections: A
Replicated Experiment,” IEEE Transactions
on Software Engineering, Vol. 21, No. 6,
1995) using as subjects 48 graduate students
in computer science and 21 professional
software developers.

We divided the participants into 23
three-member teams. Each team inspected
two software requirement specifications
using some combination of ad hoc, check-
list, and scenario methods. The experi-
mental results showed that

♦ the scenario method had a higher de-
fect detection rate than either the ad hoc or
checklist methods;

♦ scenario reviewers were more effec-
tive at detecting the defects their scenarios
were designed to uncover and were no less
effective at detecting other defects; and

♦ checklist reviewers were no more ef-
fective than ad hoc reviewers.

These results suggest that improved de-
fect detection techniques may indeed im-
prove overall inspection effectiveness.

Process environment. Initially, we found
that structure (high degrees of coordina-
tion) and environment (workload, priori-
ties, and deadlines) can significantly affect
interval. However, much of the variation in

interval was still unaccounted for. Through
direct observation and surveys we found
that developers often choose which of their
many activities to perform at any given
time. We conjectured that these are not just
random choices, but are influenced by the
process environment: the logistic, organi-
zational, and execution context in which the
inspection process operates. To test this
conjecture, we modeled the effect of
process environment on inspection inter-
val (Adam Porter, Harvey Siy, and Lawrence
Votta, “Understanding the Effects of
Developer Activities on Inspection Interval,”
Proceedings 19th International Conference on
Software Engineering, IEEE Computer
Society Press, Los Alamitos, Calif., 1997).
The factors we examined include measures
of workload, life cycle phase during which
the code is inspected, and the presence of
deadlines. We found that process environ-
ment explains more variation than does
process structure and process inputs com-
bined. However, we are still far from ex-
plaining the majority of variation in in-
spection interval. Nevertheless, this analysis
has several implications.

In particular, it is instructive to compare
the pre- and postmeeting models. We find
that the premeeting interval is not signifi-
cantly affected by the workload of the au-

thor nor that of the inspection team. The
author’s coding load is significant but it is a
negative contributor. This suggests that in-
spections progress despite increases in the
number of code units on which the author
is working. These observations imply that
authors and reviewers give a higher prior-
ity to premeeting inspection tasks than they
do to pending coding assignments. On the

I E E E S O FT W A R E 1 0 1

.

Results suggest
that even well-
prepared-for
meetings may find
fewer defects
than do individuals
working alone.

other hand, the postmeeting interval is sig-
nificantly affected by pending inspections
and rework, which implies that rework has
a low enough priority that authors defer it to
complete coding tasks. Our interpretation
of these results is that developer workload
affects interval, developers prioritize their
work, and that deadlines alter priorities.

Technology. Many companies are develop-
ing software using multiple, geographically
separated teams. When this happens, de-
pendencies between tools, processes, and
people can substantially increase develop-
ment interval. In situations where develop-
ment teams are geographically separated, it
can be very expensive to hold inspection
meetings. Our research suggests that in-
spection meetings may not always be neces-
sary. Thus, we used this situation as an op-
portunity to field test our experiment results.
(J. Perpich et al., “Anywhere, Anytime Code
Inspections: Using the Web to Remove
Inspection Bottlenecks in Large-Scale
Software Development,” Proceedings of the
Nineteenth International Conference on
Software Engineering, IEEE Computer
Society Press, Los Alamitos, Calif., 1997).
That is, if the results are reasonably general,
causal, and actionable, then they should en-
able us to change the inspection process to
reduce its interval without sacrificing effec-
tiveness. To validate our theories, we, along
with Jim Perpich, Dewayne Perry, and
Michael Wade of Lucent Technologies,
identified several contributors to inspection
delays. The most interesting of these is
blocking due to synchronization and se-
quencing of inspection subtasks. To reduce
these delays, we considered three strategies:
reduce paper, automatically generate neces-
sary reports, and reduce synchronization and
coordination. The first two strategies are
straightforward, but the best way to reduce
synchronization was less obvious. We con-
sidered three approaches.

♦ Share results. In the manual process,
reviewers perform individual analysis pri-
vately. That is, each reviewer’s findings are
unknown to the other reviewers until the
inspection meeting occurs. Our approach
was to make each reviewer’s findings pub-
lic in nearly real time.

♦ Eliminate inspection meetings. Our pre-

vious research suggests that meetings sig-
nificantly lengthen inspection interval, but
contribute little to effectiveness. Therefore,
we eliminated the inspection meeting.

♦ Overlap preparation and repair.
Because we eliminated the meeting, the
process has only two major phases, prepa-
ration and repair. Although these two
phases are normally performed sequen-
tially, we let them overlap. That is, the au-
thor may begin repairs as soon as defects
are found.

Web-based workflow system. To enforce
these process changes and to collect per-
formance data, we designed a Web-based
workflow system called HyperCode.
HyperCode is currently being used by sev-
eral development groups at Lucent. Our
main experiment involves two development
teams: one in Naperville, Ill., and the other

in Whippany, N.J. We hypothesize that the
HyperCode process will have a smaller in-
terval than the manual one, but be no less
effective. The experiment is currently run-
ning and initial results suggest that
HyperCode reduces inspection interval by
about 25 percent, with no apparent reduc-
tion in effectiveness. We must, however,
continue running the experiment to better
support these findings.

Generally, we believe that tool devel-
opment should be based on the kind of sci-
entific studies we describe here. When tools
are developed, we would like to see greater
attention paid to capturing the exact prin-
ciples that the tools exploit.

ASSESSMENT. Given our experiments’ re-
sults, we conclude that the techniques and
technology supporting individual perfor-
mance with respect to defect detection

methods have more influence on effective-
ness than do the nontechnical factors on
which current research focuses extensively.
We determined this by combining the fol-
lowing findings:

♦ process structure had no significant
effect on effectiveness,

♦ process inputs explained more varia-
tion than process structure did,

♦ individual analysis was more effective
than team analysis, and

♦ improved individual analysis tech-
niques significantly improved performance.

We conclude that effort is driven pri-
marily by the number of reviewers partici-
pating in the inspection, and that the inter-
val for a given process is driven mostly by
nontechnical factors outside the control of
the process itself.

Our work suggests that general and
identifiable mechanisms drive the costs and
benefits of inspections. However, we lack a
comprehensive theory that brings these
principles together. Thus, the highest pri-
ority for the inspection community should
be to develop such a theory; we are cur-
rently working with other researchers who
have proposed one. More generally, we be-
lieve that all empirical research must evolve
beyond simply measuring and comparing
performances toward developing validated
theories that are general, causal, and sug-
gestive of control strategies. ♦

Adam A. Porter is an assistant professor in
the Department of Computer Science and the
Institute for Advanced Computer Studies at
the University of Maryland. His research in-
terests include empirical methods for identify-
ing and eliminating bottlenecks in industrial
development processes, experimental evalua-
tion of fundamental software engineering hy-
potheses, and development of tools that
demonstrably improve the software develop-
ment process. He can be reached at
aporter@cs.umd.edu.

Lawrence G. Votta is a member of the tech-
nical staff in the Software Production
Research Department of Lucent Technologies
in Naperville, Illinois. His research interest is
to understand how to measure, model, and do
credible empirical studies with large and
complex software developments. He can be
reached at votta@bell-labs.com.

qua l i t y t im e

1 0 2 NOVEMBER/DECEMBER 1997

.

All empirical
research must
evolve beyond
simply measuring
toward developing
general theories.

