
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Façade Pattern
Apr. 05, 2007

2

What is it?

• Frequently, as your programs evolve and develop, they 
grow in complexity. 

• Furthermore, there may be a number of complicated 
subsystems, each of which has its own complex interface.

• The Façade pattern allows you to simplify this complexity 
by providing a simplified interface to these subsystems. 

• This simplification may in some cases reduce the 
flexibility of the underlying classes, but usually provides 
all the function needed for all but the most sophisticated 
users.

• These users can still, of course, access the underlying 
classes and methods.

3

For Example

• Java provides a set of classes that connect to 
databases using an interface called JDBC. 

• You can connect to any database for which the 
manufacturer has provided a JDBC connection 
class -- almost every database on the market. 

• Some databases have direct connections using 
JDBC and a few allow connection to ODBC driver 
using the JDBC-ODBC bridge class.

4

For Example

• To connect to a database, you use an instance of the Connection class. 
• Then, to find out the names of the database tables and fields, you need 

to get an instance of the DatabaseMetadata class from the Connection. 
• Next, to issue a query, you compose the SQL query string and use the 

Connection to create a Statement class.
• By executing the statement, you obtain a ResultSet class, and to find 

out the names of the column rows in that ResultSet, you need to obtain 
an instance of the ResultsetMetadata class.

• Thus, it can be quite difficult to juggle all of these classes and since 
most of the calls to their methods throw Exceptions, the coding can be 
messy.



5

In Pictures!

6

A Facade
• By designing a Façade consisting of a Database class and a resultSet class 

(note the lowercase “r”), we can build a much more usable system.

7

Database Class

8

resultSet



9

Summary

• The Façade pattern shields clients from complex 
subsystem components and provides a simpler 
programming interface for the general user. 

• However, it does not prevent the advanced user 
from going to the deeper, more complex classes 
when necessary.


