CMSC 433 — Programming Language

Technologies and Paradigms
Spring 2007

Fagade Pattern
Apr. 05, 2007

What is it?

* Frequently, as your programs evolve and develop, they
grow in complexity.

* Furthermore, there may be a number of complicated
subsystems, each of which has its own complex interface.

» The Facade pattern allows you to simplify this complexity
by providing a simplified interface to these subsystems.

 This simplification may in some cases reduce the
flexibility of the underlying classes, but usually provides
all the function needed for all but the most sophisticated
users.

» These users can still, of course, access the underlying
classes and methods.

For Example

» Java provides a set of classes that connect to
databases using an interface called JDBC.

* You can connect to any database for which the
manufacturer has provided a JDBC connection
class -- almost every database on the market.

* Some databases have direct connections using
JDBC and a few allow connection to ODBC driver
using the JDBC-ODBC bridge class.

For Example

* To connect to a database, you use an instance of the Connection class.
¢ Then, to find out the names of the database tables and fields, you need
to get an instance of the DatabaseMetadata class from the Connection.

« Next, to issue a query, you compose the SQL query string and use the
Connection to create a Statement class.

* By executing the statement, you obtain a ResultSet class, and to find
out the names of the column rows in that ResultSet, you need to obtain
an instance of the ResultsetMetadata class.

» Thus, it can be quite difficult to juggle all of these classes and since
most of the calls to their methods throw Exceptions, the coding can be
messy.

In Pictures!

ResultSet i ResultSet
Metadata [=
4
Exefute
Database get Connection et Statement
Metadata

Crgate

A Facade

By designing a Fagade consisting of a Database class and a resultSet class
(note the lowercase “r”’), we can build a much more usable system.

Database Class

Claszs Database {
public Database(String driver) () //constructor
public void Open(String url, String cat);
public String[] getTableNames () ;
public String[] getColumnMNames (String table);
public String getColumnValue (String table,
String columnName);
public String getNextValue (String columnName) ;
public resultSet Execute(String =qgl);

| Database | | resultSet
| |
ResultSet .
Metadata get ResultSet
Exefute
Database qat)
Metadata Connection ereate— Statement
Create
resultSet

class resultsSet

{

public resultSet (ResultSet rset)
public String[] getMetaDatal();
public boolean hasMoreElements () ;
public String[] nextElement ();

public String getColumnValue (String columnName) ;
public String getColumnValue (int 1i);

//constructor

» The Fagade pattern shields clients from complex
subsystem components and provides a simpler
programming interface for the general user.

* However, it does not prevent the advanced user

from going to the deeper, more complex classes
when necessary.

