
1

CMSC 433 – Programming Language
Technologies and Paradigms

Spring 2007

Java RMI
May 3, 2007

2

Distributed Computing

• Programs that cooperate and communicate
over a network
– E-mail
– Web server and web client
– SETI @Home

3

Key Features of Distrib. Comp.

• Machines are not all the same
– But all adhere to same communication protocol

• Network is “slow”
– Sending a message takes a lot of time

• Network is unreliable
– Machines may join and leave with no warning
– Part of the network may fail

4

Different Approaches to
Distributed Computation

• Connecting via sockets
– Custom protocols for each application

• RPC/DCOM/CORBA/RMI
– Make what looks like a normal function call
– Function actually invoked on another machine
– Arguments are marshalled for transport
– Value is unmarshalled on return

2

5

Remote Method Invocation

• Easy way to get distributed computation
• Have stub for remote object

– Calls to stub get translated into network call
– Implemented on top of sockets

• Arguments and return values are passed
over network
– Java takes care of the details

6

A Simple Example
class ChatServerImpl ... { // runs on one mach.

public void say(String s) {
System.out.println(s);

}
...

}
class Chatter { // runs on another mach.

public static void main(String args[]) {
ChatServer c = // get remote object;
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
while (true) {

System.out.print(“> “);
c.say(br.readLine());

}
} }

7

Remote Objects

• Object should
– Extend java.rmi.server.UnicastRemoteObject

• Constructor declared to throw RemoteException
– Fine Print: actually, don’t NEED to extend

UnicastRemoteObject, but it’s much easier

– Implement a remote interface
• A remote interface extends java.rmi.Remote
• All methods in a remote interface throw

RemoteException
– “Something bad happened on the network”

8

Remote Interfaces

3

9

Stubs

• Client only sees the RemoteInterface
– ConcreteObject can have other methods

• Remote objects represented using stub
– Stub sends arguments over network
– Stub receives result back from network

10

Compiling Stubs with rmic

• Generates stub code for a class
– Generates position-independent code

• Generates stubs for all methods declared in
the class’ Remote interface
– Other methods don’t get a stub

11

Stub Code

• Objects contain both data and code
– When you receive a remote object, you need

the stub for that remote object

• Solution #1: All clients have stub code on
their classpath
– Or stub code for another class with same

remote interface
12

Downloading Code

• Solution #2: Provide a code base where
stub code for objects can be downloaded

java -Djava.rmi.server.codebase=<url> ...

– Specifies location of classes originating from
this server

– url can be, e.g., http:// or file:/

4

13

Security Manager

• Downloading code (even stub code) from
the internet is potentially risky
– Need to limit what downloaded code could do
– Must install a Security Manager before you

download any code from RMI code bases
• Can use

System.setSecurityManager(

new RMISecurityManager());

14

Policy Files

• In addition to security manager, need to
specify a security policy
grant {
permission java.net.SocketPermission
“*:1024-65535”, “connect,accept”;
permission java.net.SocketPermission “*:80”,
“connect”;

};

• Set security policy when JVM started
– java -Djava.security.policy=<file name>

15

Getting the First Remote Object

• Can make objects available in RMI registry
– Each object has a name (that you specify)
– Registry listens on a port (1099 default)

• Naming.lookup(url) gets object from reg.
– E.g., Naming.lookup(“rmi://localhost/Chat”);
– Use to get first reference to remote object

16

Starting an RMI Registry

• Method 1: Separate RMI registry process
– Command rmiregistry

• Run with stubs in classpath, or specify codebase
– Listens on port 1099 by default

• Method 2: Start in same JVM
– LocateRegistry.createRegistry(int port)
– Advantage: dies when your program dies

• No registries lying around on machine

5

17

Advertising Remote Objects

• Call Naming.{bind/unbind/rebind} to place
objects in registry
– E.g., Naming.bind(“rmi://localhost/Chat”);

• Can bind/unbind/rebind name on localhost
• Can lookup name on any host

18

Example: RMI Chat Server

• Server
– Runs the chat room

• Client
– Participant in chat room
– Receives messages from others in room

• Connection
– Uniquely identifies a client
– Used to speak in chat room

19

Server
interface Server extends Remote {

Connection logon(String name, Client c)
throws RemoteException;

}

20

Connection
interface Connection extends Remote {

/** Say to everyone */
void say(String msg)

throws RemoteException;

/ ** Say to one person */
void say(String who, String msg)

throws RemoteException;

String [] who()
throws RemoteException;

void logoff()
throws RemoteException;

}

6

21

Client

interface Client extends Remote {

void said(String who, String msg)
throws RemoteException;

void whoChanged(String [] who)
throws RemoteException;

}

22

Server’s Remote Object creation

ServerImpl

Server s = new ServerImpl();

Hosted
Remote
Objects

s

Server

Object added to table
because it implements
extension of Remote
interface

23

Remote Object registry

ServerImpl

Naming.rebind(“ChatServer”, s);

Hosted
Remote
Objects

ChatServer

ServerImpl
Stub

s

Server RMI Registry
24

Client’s Remote Object creation

ClientImpl

Client c = new ClientImpl();

Hosted
Remote
Objects

c

Client

Client object also
implements extension
of Remote interface

7

25

Client looks up Server
Server s = (Server)

Naming.lookup
(“//host/ChatServer”);

s ServerImpl
Stub

Hosted
Remote
Objects

ServerImpl

Client ServerRMI Registry

ChatServer

ServerImpl
Stub

lookup

returns
stub

26

After lookup finished

ClientImpl

Hosted
Remote
Objects

c

s ServerImpl
Stub

Hosted
Remote
Objects

ServerImpl

Client Server

27

Invokes remote Server method
Connection conn = s.logon(“Bill”, c);

s ServerImpl
Stub

Client

Stub code
for remote
logon call

String “Bill”

Stub for c

Method: logon

… to server process

logon

ClientImplc

28

Receives remote call

Server

(Skeleton)
code for
remote

logon call
String “Bill”

Stub for c

Method: logon

… from client process

Hosted
Remote
Objects

ServerImpl
“Bill”

ClientImpl
Stub c

unmarshalled arguments

8

29

Executes the call

Server

Hosted
Remote
Objects

ServerImpl
“Bill”

ClientImpl
Stub c

call logon …

ConnectionImpl

… create new Connection object

30

Returns the result

Server

Hosted
Remote
Objects

ServerImpl

ConnectionImpl

… return this as the result

(Skeleton)
code for
remote

logon call

Stub for conn

Return value:

… to client process

31

Receives the result

s ServerImpl
Stub

Client

Stub code
for remote
logon call

Stub for conn

Return value:

… from server process

logon Conn Stub

conn

unmarshalled return value

