
1

CMSC 433 – Programming Language 
Technologies and Paradigms

Spring 2007

Strategy Pattern
Apr. 19, 2007

2

What is it?

• The Strategy pattern is much like the State pattern in outline, but a little different in 
intent. 

• The Strategy pattern consists of a number of related algorithms encapsulated in a 
driver class called the Context. 

• Your client program can select one of these differing algorithms or in some cases the 
Context might select the best one for you. 

• The intent, like the State pattern, is to switch easily between algorithms without any 
monolithic conditional statements. 

• The difference between State and Strategy is that the user generally chooses which 
of several strategies to apply and that only one strategy at a time is likely to be 
instantiated and active within the Context class. 

• By contrast, as we have seen, it is likely that all of the different States will be active 
at once and switching may occur frequently between them. 

• In addition, Strategy encapsulates several algorithms that do more or less the same 
thing, while State encapsulates related classes that each do something somewhat 
different. 

• Finally, the concept of transition between different states is completely missing in 
the Strategy pattern.

3

Use it when…

• A program requires a particular service or function and which has 
several ways of carrying out that function is a candidate for the 
Strategy pattern. 

• Programs choose between these algorithms based on computational 
efficiency or user choice. 

• There can be any number of strategies and more can be added and any 
of them can be changed at any time. 

• The idea behind Strategy is to encapsulate the various strategies in a 
single module and provide a simple interface to allow choice between 
these strategies. 

– Each of them should have the same programming interface, although they 
need not all be members of the same class hierarchy. 

– However, they DO have to implement the same programming interface.
4

Use it when…

• There are a number of cases in programs where we’d like 
to do the same thing in several different ways. 
– Save files in different formats.
– Compress files using different algorithms
– Capture video data using different compression schemes
– Use different line-breaking strategies to display text data.
– Plot the same data in different formats: line graph, bar chart or pie 

chart.

• In each case we could imagine the client program telling a 
driver module (Context) which of these strategies to use 
and then asking it to carry out the operation.



5

For Example

• Consider a simplified 
graphing program that can 
present data as a line 
graph or a bar chart. 

• We’ll start with an 
abstract PlotStrategy class 
and derive the two plotting 
classes from it.

6

PlotStrategy Code

• Because each plot will appear in its own frame, our base 
PlotStrategy class is derived from JFrame.

7

Notes…

• The important part is that all of the derived classes 
must implement a method called plot with two 
float arrays as arguments. 

• Each of these classes can do any kind of plot that 
is appropriate.

8

The Context

• The Context class is the traffic cop that decides 
which strategy is to be called. 

• The decision is usually based on a request from 
the client program, and all that the Context needs 
to do is to set a variable to refer to one concrete 
strategy or another.



9

Context Code

10

Context Code (2)

11

Data Handling

• The Context class is also responsible for handling 
the data. 

• Either it obtains the data from a file or database or 
it is passed in when the Context is created. 

• Depending on the magnitude of the data, it can 
either be passed on to the plot strategies or the 
Context can pass an instance of itself into the plot 
strategies and provide a public method to fetch the 
data.

12

The UI

• This simple program is just a panel with two 
buttons that call the two plots.

• Each of the buttons is a command object that sets 
the correct strategy and then calls the Context’s 
plot routine.



13

Line Graph Button Class

14

• Set up the window size for plotting and call a plot method 
specific for that display panel.

15

Notes

• Since Java GUI is event-driven, you 
don’t actually write a routine that draws 
lines on the screen in direct response to 
the plot command event.

• Instead you provide a panel whose paint 
event carries out the plotting when that 
event is called. 
– The repaint() method invocation ensures that 

it will be called right away.
• We create a PlotPanel class based on 

JPanel and derive two classes from it for 
the actual line and bar plots.

16

PlotPanel

• The base PlotPanel class contains the common 
code for scaling the data to the window.



17

PlotPanel (2)

18

PlotPanel (3)

19

The Derived Classes• The two derived classes simply implement the 
paint method for the two kinds of graphs.

20

Notes…

• Note that we don’t derive it from our special 
JxFrame class, because we don’t want the entire 
program to exit if we close one of these subsidiary 
windows. 

• Instead, we add a WindowAdapter class that just 
hides the window if it is closed.



21

WindowAdapter

22

The Final Result

23

Concluding Remarks

• Strategy allows you to select one of several algorithms dynamically.
– These algorithms can be related in an inheritance hierarchy or they can be 

unrelated as long as they implement a common interface. 
– Because the Context switches between strategies at your request, you have 

more flexibility than if you simply called the desired derived class. 
– This approach also avoids the sort of condition statements than can make 

code hard to read and maintain.
• On the other hand, strategies don’t hide everything. 

– The client code must be aware that there are a number of alternative 
strategies and have some criteria for choosing among them. 

– This shifts an algorithmic decision to the client programmer or the user.
• Since there are a number of different parameters that you might pass to 

different algorithms, you have to develop a Context interface and 
strategy methods that are broad enough to allow for passing in 
parameters that are not used by that particular algorithm.


