-

Automated Model-Based Testing of
Event-driven Software Applications

Atif M. Memon
atif@cs.umd.edu

Department of Computer Science

Institute for Advanced Computer Studies
University of Maryland

I
[Handlers Can handle an

I

I event of type e
AN | @
I 3

I Dispatcher .,
I

I

I

State = S, e A

Execution Environment

User events invoke
event handlers

S
changeFontSizeActionPerformed
[EE RN}) .
(java.awt.event.ActionEvent evt)
newDocActionPerformed e Even‘r
(java.awt.event.ActionEvent evt) e

Handlers

fileSaveActionPerformed
(java.awt.event.ActionEvent evt)

_ Choose Your Favorite EDS!

* Graphical-user interfaces

+ Web applications

* Network protocol implementations
* Middleware

*+ Object-oriented software

« Robots - man-machine interfaces
* Multi-agent based systems

_Focus on GUIs | 5

Simple model of an event
A user action

- click-on-File-menu,

- click-on-OK-button,

- type-in-textbox()

Complex interactions

* Large space of event interactions

- Number grows exponentially with length

*GUI Testing: Pitfalls and Process, Atif M. Memon, IEEE Computer, vol. 35, issue. 5, 2002.
*Advances in GUI Testing, Atif M. Memon, Highly Dependable Software, (M. V. Zelkowitz ed.), Advances
in Computers, Academic Press, vol. 58, pp. 149-201, 2003.

_ State of the Practice - Manual

Set of |
Tasks

*+ Very few test cases
* Oracle: mostly visual
+ Test “common"”
sequences
- Bad Idea
+ What is "common"?
+ Try some “uncommon”
sequences

et el
+ Test cases not
reusable

*+ Must do it again when
app changes

State of the Practice - Code Tests

Lagin Name:

Fassword:

JFCUnit

* Can be replayed
automatically

G

bl

def cb ():
callbackState.set ()

waittillguiexist ('dlgReplace')
click ('dlgReplace', 'btnClose')

callbackState.clear ()

callbackRunning.set ()

print 'callbackend'
onwindowcreate ('Replace’,

cb)

click ('*gedit', 'btnReplace')

* Mu'ﬁpl:s click ('*gedit', 'btnOpen')

. ;‘ac el:S' waittillguiexist ('dlgOpenFiles...')
t:gfr}ng: '8'1‘)1 click ('dlgOpenFiles...', 'btnClose')
evolves if callbackState.isSet ():

+ Oracle: what to print 'Waiting for callback to
check? complete'

+ Still have “Few
tests" problem

Several other tools
+ LDTP
+ GUITAR

callbackRunning.wait ()
print 'callbackset'
print 'test end'

OX

State of the Practice - Qap’rgzg/!?_eplayj

Set of

Tasks \

/ Recorded Code | Generated LDTP cnde| Generated LD’

=5 ¢

@ 1>/ Tester MANUALLY
= LDTP Editor -8 %
File Edit Wiew Help
B -1 [0. [#] Listen key events

[#] Listen mouse events

[+] Generate LOTP code
Generate data XML
Generate keyboard gvents code
Generate wait time code

Start F] Preferences

Generate Memaory / CPU statistics

agancel <{£|QK

State of the Practice - Capture

- — - -

Test
File

Q
=
S
g
(¢}
Test
File
Test |
File
=
)
=
Test @

/Replay

* Tool replays tester’s
actions

* Verifys application
response against stored
response

*DEMO

State of the World

F Value

Microsoft Management Console

These problems
persist
- Regression testing: GUI
evolves
+ “"Low ROT"

- Oracle: what to check?
+ “Tool made us miss
this error”
- Too few tests

+ “But you shouldn't have
done that"

+ DEMO

L3 L4 L5 L6
Test Oracles

- More philosophical
question remains
o + How to test 6UIs and

0.9.2] 48| 240|57 78|43
other large event-

0. §I 499| 282(57] 17143
007|522 319/61] 20339 driven applications?

0.9.8b7| 550] 301|55] 49|45

099p2] 72| 39755 325|245,

* Mouse/key-
board
interceptors

* Well-defined
File formats

* Good Uls

2

GUI Model

Start with capture/replay
tools

- Well-engineered

- Test management

(widgets, value, property) triples
Pre/postconditions

- AI planning
Directed graph models

- Event-flow graph

- Event-interaction graph
Covering arrays
Probabilistic state machines

What is the cost of creating and
maintaining the model?

11

AT Planning

-

Create planning operators

- Pre- postconditions for each event

AT planner generates test cases
Application of postconditions creates
test oracle

For modified GUI

- Change operators

- Replanning

13

Operator Example

oc, ordPad
ZileEdt Insert_Foimat _Help

Lcle| Sl o] 3 Operator :: set-background-color

';““NEW‘R“”E"?“‘”") A" =/ | parameters: wX: window; col: color;

’ Tusis theter Pr‘econd.iﬁon:
— isCurrent(wX),
— T - background-color(wX, oldColor),
set-background-color oldColor I= col.
(w19, yellow)

Effects:
background-color(wX, col).

= R R
[Times NewForan tecter) =
z [1 2 ' 3

For Help, press F1 _ v

* Huge investment in operator creation
and maintenance
* Works well for small number of
events

Directed Graph Models

=

* Model the space of GULI interactions
as a graph
- i.e., given a GUI, create a graph model of

all the possible sequences that a user
can execute

- Use the model to generate event
sequences

Sampling_The Event-Interaction Space

* Event flow graph (EFG)

—Nodes: all GUT events
ARG Ehent:

File nage

Follows

Follov

* Tes
-C
See: M. MemoN - ’;i@ng the Fault-Deteotion, 283y

Effectiveness o y g are.
Transactions on Software Engineering, vol. 31, no. 10, 2005, pp. 884-896.

se generation

llows

o
7o

_Creating Event-Flow Graphs

-~ P

To Fil:', Edit . -
and Help B v
"y To File, Edit ..~
and Help
How to create the event-flow graph?

* Manually?
* Too large for non-trivial GUIs

A Part of MS WordPad '

e g
C
|

[ibemnene R I‘““——l

Faolacz |

Seplocs sl

[Frr i s

18

Its Event-Flow Graph

~
1
-

To File, Edit - .
and Help v
. To File, Edit
and Help

+ How to create the event-flow graph?
* Automatically
* Reverse Engineering
+ GOAL: Obtain the Event-Flow Graph
* Fully automatically
* No source code

+ Dynamic algorithm - Engineering Issues
- No need for source code - é’;i??fg“@"di" rﬂﬁ;ﬁ;";‘m’s
+ Execute the GUI-based + 0OS-specific GUI handling
software - Introspection
- Traverse the GUL - Windowing APT
+ Obtain handle of first - Java Swing APT
window - Interaction between Java and
+ Use windowing API to the 0OS
extract widgets/menus + Result - Generic process for
+ Apply transformations GUT Ripping
- Based on GUI dialogs + MS Windows, Java Swing
- GUI hierarchy + Immediate impact - Obtained
- Enabled/disabled widgets EFGs for large GUIs ina few
+ Traverse multiple times if minutes
needed DEMO

GUI Ripping: Reverse Engineering of Graphical User Interfaces for Testing, Atif M. Memon, Ishan
Banerjee*, and Adithya Nagarajan*, Proceedings of the IEEE 10th Working Conference on Reverse
Engineering, pp. 260-269, Nov. 13-16 2003.

Impact on others’ research: “design mentoring” based on evolution analysis; introspective approach
to “marking” GUIs; unsupervised user modeling

- -

* Typical desktop app
- ~350 nodes
= - ~b50,000 edges
* Need smart ways to generate test
| cases

21

Impact of GUI Ripper

* A way fo generate test cases for large
GUIs

- Examine execution results to better understand
the nature of GUI software
- Enabled experimentation
- Study the characteristics of test cases
- Reduce the event-flow graph
* represent “important” interactions
* Developed "event-space exploration
strategies” (ESES)

- E.g., "Repairing" test cases for regression
testing

_Nature of GUI Software

° 100 92 97 98

E 80

5% 60-

o% 40 -

gm

£ 20

E 0 T T 1
0 1 2 3

Event-sequence Length

+ Showed that length 1 and 2 event sequences detect faults

. ?UT' certain length 3 (and more) sequences detect additional
aults

+ Although they do not add much to code coverage

- One of the first to show that EDS (at least GUIs) require
different testing techniques

23

Enabled Experimentation

-

* Generate large numbers of test cases
- Various types
* Random
+ Event-flow graph edge adequate
* Code-coverage adequate
+ Covering arrays
* Millions of test cases

- 120 machine cluster
- CONDOR jobs on UMIACS clusters

+ Study the execution results and
improve testing techniques

24

‘Dissecting Ec:gled__ Test Cases

Effective Event where Rest of the
event sequence test case failed test case
Initial
State | €1 7] (4] €y €| |Cx1| | x| |Cxtt
N] %
test case

CEEED

R = reaching events that open menus/windows
W = events that open windows
T= termination events that close windows
S = system-interaction events (e.g., CUT, COPY, PASTE)

Understanding the Effective Event Sequencé

Effective Event
Sequence #
Pattern Structure e, | Failures

S 676

1 R* w 6
S 431

2 R*S w 1

3 R*SR+ S 19
R*SR*(SR*)+ S 142

R = reaching events that open menus/windows
W = events that open windows
T= termination events that close windows
S = system-interaction events (e.g., CUT, COPY, PASTE)

Generate these effective sequences automatically

Definitions)
- - S
o Definition: An event-flow-path < nying;...ing >
is interaction-free iff none of na,...,mp_; represent
system-interaction events. O

« Definition: A system-interaction event e, interacts-with
system-interaction event e, iff there is at least one
interaction-free event-flow-path from the node n, (that
represents e;) to the node n, (that represents ey). o

Studying the Fault-Detection Effectiveness of GUI Test Cases for Rapidly Evolving Software, Atif M.
Memon and Qing Xie*, IEEE Transactions on Software Engineering, IEEE Computer Society Press, vol.
31, no. 10, pp. 884-896, Oct. 2005.

28

Event Interaction Graph

- - el

Event-flow Graph

Event-interaction

Pattern 1: R*

Pattern 2: R*S

Pattern 3: R*"SR+
Pattern 4: R*SR*(SR*)+

29

Event-ﬂinterchion__ 6raph (EIG)

+ Event-interaction graphs
- Higher level of abstraction than event-flow
graphs
- Edges represent longer “important” paths in the
GUI
* New test adequacy criteria
- Event-flow graph interaction-free path
coverage
- Event-interaction graph edge coverage

+“Using a Pilot Study to Derive a GUI Model for Automated Testing,” by Qing Xie and Atif M. Memon,
ACM Trans. on Softw. Eng. and Method.

Agile Quality Assurance Techniques for GUI-Based Applications, Qing Xie and Atif M. Memon, Agile
Software Development Quality Assurance, to appear 2007.

Rapid ‘Crash Testing’ for Continuously Evolving GUI-Based Software Applications, Qing Xie and Atif M.

Memon, Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM 2005).

_Full Automation

* Process
- Reverse engineer application
- Generate event-flow graph
- Transform to event-interaction graph

- Use our new test-adequacy criteria to generate test
cases (e.g., cover all edges - important sequences of
events in a GUT)

- Use test executor to run all test cases
+ Test Oracle

- Assertions in the code

- Invariants - Diakon

- "Did the application crash?”

Automated Model-based Testing of Community-Driven Open Source GUI Applications, Qing Xie* and
Atif M. Memon, Proceedings of the 22nd IEEE International Conference on Software Maintenance
(ICSM 2006).

__Lets See How It Works!

+ Point to the CVS head
- Push the button
- Read error report

* What happens

Gets code from CVS
head

- Builds

- Reverse engineers the
event-flow graph

- Creates EIG
- Generates test cases to
cover all the edges
+ 2-way covering
- Runs them
* SourceForge.net 0
- Four applications

-

*

-

CrosswordSage
5

FreeMind

IS

GanttProject JMSN

Number of Faults Detected

_Digging Deeper!

* Intuition
- Nor&-)in‘rerac‘ring events (e.g., Save,
in
— Interacting events (e.g., Copy, Paste)

* Key Idea
— Identify interacting evein,
— Mark the

(Annotated graph) \’-}“i

EIG edges

— Generate
3-way, 4-way, ... covering EIG
test cases for interacting
events only

“Using GUI Run-Time State as Feedback to Generate Test Cases” by Xun Yuan and Atif M. Memon. In
ICSE '07: Proceedings of the 29th International Conference on Sofiware Engineering, May 23-25, 2007, pp.
396-405.

__Identifying Interacting Events

+ High-level overview of approach
— Observe how events execute on the GUL
— Events interact if they influence one another’s execution
+ Execute event e2; execute event sequence <el, e2>
« Did el influence e2's execution?
« If YES, then they must be tested further; annotate the <el,
e2> edge in graph
» Use feedback
— Generate seed suite
+ 2-way covering fest cases
- Run test cases
* Need to obtain sets of GUI states
— Collect GUI run-time states as feedback
— Analyze feedback and obtain interacting event sets
— Generate new test cases
« 3-way, 4-way, ... covering test cases

Did We Do Better?

=

+ Compare feedback-based approach
to 2-w

CrosswordSage

FreeMind

GanttProject

Number of Faults Detected

Test Oracle for Regression Testing

Version i

(Ok-button, COLOR, GREY)

(Ok-button, HEIGHT, 40) 1
(Ok-button, WIDTH, 100) | GUI State Comparlson |
(

Ok-button, TEXT, “Ok”)

Version i+1

T = GUI test case of length n
e; =" GUI event of test case
S, = Initial State of the GUI

Empirical Evaluation of the Fault-detection Effectiveness of Smoke Regression Test Cases for GUI-based
Software, Atif M. Memon and Qing Xie*, Proceedings of the 20th IEEE International Conference on
Software Maintenance 2004 (ICSM 2004), Chicago, IL, USA, pp. 8-17, Sep. 11-17, 2004.

__6UI Test Oracles from Specs

* For each event, develop
- Pre-conditions
* Necessary for an event o execute
* E.g., (OK-button, Active, TRUE)
- Effects
* How the event changes the GUT
* E.g., (FindWindow, isVisible, FALSE)
* Pre-conditions/effects checked
during test execution

What Test Oracle Should I use for Effective GUI Testing? Atif M. Memon, Ishan Banerjee*, and Adithya
Nagarajan*, Proceedings of the IEEE International Conference on Automated Software Engineering
(ASE 2003), Montreal, Quebec, Canada, pp. 164-173, Oct. 6-10 2003.

37

Mixing and Matching

-

« Test-cas
Ge i

< Cover n-way event

interactions A

P
_ conditions/effects
AN

~

Studied characteristics Testi . ..
esting Technique E 11
of faults and GUI tests g a c(:nn:’;;f:d ¥

Exten.dmg the work — mpr ensive test oracles for
Jaymie Strecker i effectiveness
(current PhD student) H@

*First such study

Designing and Comparing Automated Test Oracles for GUI-based Software Applications, Qing Xie and
Atif M. Memon, ACM Transactions on Software Engineering and Methodology.

«Studying the Characteristics of a ‘Good” GUI Test Suite, Qing Xie* and Atif M. Memon, Proceedings of the
17th IEEE International Symposium on Software Reliability Engineering (ISSRE 2006), Raleigh, NC,
USA, Nov, 6-10 2006,

___GSJI Regressipq Testing Problem

Acrobat Reader 5.0 A test case of length 3

P& Acrobat Reader - [ue-survey.pdf] _|olx]

i dit Document Tools View Window Help _[5|X| | File |_’| Document Security |_’| OK

cul+0 [@a-s-= &
Close’ Ccul+w
Save A CORy... Cl+shift+s j
=
iy

Document Security... Ctrl+Alt+S

x|

Security Methed: Nene
User Password: No
Master Password: No
Frinfing: Fully Allowed
Changing the Document: Allowed
et Copying or Extraction: Allowed
d Form Fields: Allowed
Form Field Fill-in Allowed
Content Acceseibility Encbled:
Documert Assembly: - Allowed
Encryption Level

Page Setup... t
Print... Ctrl+p

1C:\.\ue-survey pdf

Exit cul+Q

=
=

#Jiw] 10f55 »m 85x11in O

A Model-Based Approach to Automatically Repair GUI Test Cases for Regression Testing, Atif M. Memon,

ACM Transactions on Software Engineering and Methodology.

GUI Regression Testing Problem

Acrobat Reader 6.0

A test case of length 3

40

State of the Practice

B Adobe nead pd _|ol x| . .
#| Fyd Edit View Document Tools ow Help | Flle |_'| Document Securlty |_'| OK
Create Adobe PDE Online... | X/
-/ ~open... Ctrl+0 \amens
—f iz My Bookshelf... Loopen
/% Email... g -
7| Close ctl+w L .
o et shift+Ctil+S 2 Because GUI test cases are
5| Saveas Tert..
] S T e — e sequences of events, as many
gl e as 75% may become unusable”
3 PrintMe Internet Printing... Alt+Ctrl+P / Foundations afSoftware Engineering, 2003
1.C:\...\ue-survey pdf
8 it L cy)
g =l " i
ESxiin ™ Event "Document Security
4 4 1 of 55 PN [© o L= [HEE

no longer in menu

Test case cannot be executed!!!

original test suite
usable test cases unusable test cases
Identified manually
select & discarded
Selected usable new
\test cases test cases,

~—
regression test suite

10

41

AESES to Rggair Test Cases

E——

original test suite

N

usable test cases unusable test cases

select repair
not repairable
Selected usable repaired new discard
\test cases test cases,
—~—

regression test suite

Automated GUI Regression Testing Using Al Planning, Atif M. Memon, Artificial Intelligence Methods in
Software Testing, (A. Kandel, H. Bunke and M. Last ed.), World Scientific Series in Machine Perception
and Artificial Intelligence, World Scientific Publishing Co., vol. 56, pp. 51-100, 2004.

First time test cases have ever been automatically repaired

Percentage of Test Cases that Remained Usable :

s et (r———1

r—

[
| 01 [t view Document Tools Window Help

A Repaire

= o] x| =

d Test Case

[Document Properties

Crl+w
Shift+Ctrl+S

Document Properties

ﬁw Security

S| = prinr crl+p
Z] PrintMe Intemet Printing... Alt+Ctrl+P
P11 e\ \ue-survey pdf
5| Exit Cul+Q
85xilin 4| »
1 of 55 P[0 L= H

Repair the old test case
to obtain this new one
fully automatically

T [Document Security
The document's Security Method Is Used toe done to the document.

42

|x

Sectrlty Method: - No Security

Can be Operedby: All versions of At

Dcument Restrictions Summary

Prinfing: Al
Document Assembly: Ne
gt Copying or Extraction: Al

Contert ENgaction for Accessibility: Al

Commenting: Ne
Aing of form fields: All

Signing: Ne
plate Pages: N
Submiging Forms:

Creation of

Cancel

Impact on others’ research: Repairing session data to improve web regression testing

Impact of Deleted Events on the Number of Unusable Test Cases

s

i O ———— -
crosewordsage.0.2 Freeming.0.1.0 | msmo.s.a
17.51 singles - 0 44 |;0ff singles 133 - 5| singles - 151
151 " e 2]
s 54 |
20 100
1 200 dsmeeproject.1.s.11
r o — e T
. e 150
T Ti g 25 ™
100
3w e reentind 0.4 . quso.5.5
ot [+ of Sissies - 363 50 o Sheeied’ue
EL N
5o o B
. o y
20 .
15 Ganteproject 1,10.3 =0f
19 e o PO PR e+ |
s e)
i 34 75 EE 35 52
w00
ool Cesamvorssage.0.3.1 . |100q reeewinae.71 men0.9.7
70 Singles - 0 singles _ 405 | 200f Singles . 293
600 800| et
LI 00}
w00 .
309 409 Ganeeprojece.1.11.1 , | o
o 200] 00| singles - 137 -
100
w00
i £
500
ooy Crasswors rdSage- 0.3.2 FreeMind 0.8.0RCS 209 JMEN. 0.9.6B7
et - ittt et
sof 3009 = -
b
o 2004
| Gantteroject z.oprel o}
- 1006 60| singles - 521 PR
& 500 o}
| 557 a0 o =
300
[- d8age.0.3.5 , [s00q Preewtnd o.s.0 . e 09902
R et Eireit A Slosies Tee
250 Ll 10
125 o
2o 200 57
7 2004 o

44

11

GUI Tools & Experimentation Subjects’

+ GUITAR
- http://quitar.cs.umd.edu
+ "Benchmarks" - TerpOffice & SourceForge Apps
+ Six Terpoffice applications and six SourceForge applications
. For‘ TerpOffice
Requirements and design documents
- CVS history
- 100's of Bug reports
- 10000's of test cases: JUnit + GUITAR
- Test oracles
- 100's of fault seeded versions
- Five versions (one per year)
- CMSC 435 project is more realistic
- Already used by other researchers
Static analysis (rpi.edu)
Interaction testing using covering arrays (unl.edu)
Prioritization using interaction coverage (umn.edu)
Studying GUI failures (ICSE 2005) (ncsu.edu)
Refactoring GUI code (waterloo.edu.ca)

+ Shared process diagrams/artifacts

An Event-Flow Model of GUI-Based Applications for Testing, Atif M. Memon, Software Testing,
Verification & Reliability, John Wiley & Sons, Inc.

Additional Contributions

=

+ Getting to know GUI faults better

.

.

« Jaymie Strecker (current PhD student)

“Relationships Between Test Suites, Faults, and Fault Detection in GUI Testing”
by Jaymie Strecker and Atif M. Memon.

In ICST '08: Proceedings of the First international conference on Software Testing,
Verification, and Validation, 2008.

“Faults' Context Matters” by Jaymie Strecker and Atif M. Memon. In Proceedings of The
Fourth International Workshop on Software Quality Assurance (SOQUA '07).

Transient and persistent failures

“Smart" light-weight test oracles

Using Transient/Persistent Errors to Develop Automated Test Oracles for Event-driven
Software, Atlf M Memon and Qing Xie*, Proceedings of the 19th IEEE International
Software E) 1g 2004 (ASE 2004), Linz, Austria, pp. 186-

Co
195 Sep. 20 24 2004.

Employ GUT user profiles for testing

Annotating the edges of event-flow graphs
+ Already applied to GUI-component testing

« Employing User Profiles to Test a New Version of a GUI Component in its Context of
Use, Atif M. Memon, Software Quality Journal, Springer Inc.

N-gram approach

+ Penelope Brooks (current PhD student)
+ “Automated GUI Testing Guided by Usage Profiles” by Penelope Brooks and Atif M. Memon. In ASE
'07: Proceedings of the 22nd IEEE 1 d software engineering, 2007.

_Additional Contributions (contd..)

+ Combinatorial techniques
— “Covering Array Sampling of Input Event Sequences for Automated GUI Testing”™
by Xun Yuan, Myra Cohen. and Atif M. Memon, in ASE '07: Proceedings of the
22nd IEEE international conference on Automated software engineering, 2007.
— “Test Suite Prioritization by Interaction Coverage” by Renee C. Bryce and Atif M.
Memon. In Proceedings of The Workshop on Domain-Specific Approaches to
Software Test Automation (DoSTA 2007.

* New model of components for improved testability
— A Process and Role-Based Taxonomy of Techmques to Make Testable COTS Components,
Atif M. Memon, Testing Ce and Systems, (S. Beydeda
and V. Gruhn ed) Springer, pp. 109- 140 2004.

+ New testing criteria
- Call-stack coverage
+ Scott McMaster (current PhD student)
* “Call-Stack Coverage for GUI Test-Suite Reduction” by Scott McMaster and Atif M.
Memon. IEEE Trans. Softw. Eng., 2008.

“Fault Detection Probability Analysis for Coverage-Based Test Suite Reduction”
by Scott McMaster and Atif M. Memon. In /CSM '07: Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM'07), (Paris, France), 2007.

Call Stack Coverage for GUI Test-Suite Reduction, Scott McMaster* and Atif M.
Memon, Proceedings of the 17th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2006), Raleigh, NC, USA, Nov. 6-10 2006.

Call Stack Coverage for Test Suite Reduction, Scott McMaster* and Atif M. Memon,
Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM 2005), Budapest, Hungary, pp. 473-482, Sep. 25-30, 2005.

47

12

