
1

1

Static and dynamic verification

•  Software inspections
–  Concerned with analysis of the static system

representation to discover problems (static
verification)

–  May be supplement by tool-based document and
code analysis

•  Software testing
–  Concerned with exercising and observing

product behaviour (dynamic verification)
–  The system is executed with test data and its

operational behaviour is observed

2

Static and dynamic V&V

Formal
specification

High-level
design

Requirements
specification

Detailed
design

Program

Prototype
Dynamic
validation

Static
verification

3

V& V goals

•  Verification and validation should establish
confidence that the software is fit for
purpose

•  This does NOT mean completely free of
defects

•  Rather, it must be good enough for its
intended use and the type of use will
determine the degree of confidence that is
needed

4

V & V confidence

•  Depends on system’s purpose, user
expectations and marketing environment
–  Software function

•  The level of confidence depends on how critical the
software is to an organization

–  User expectations
•  Users may have low expectations of certain kinds of

software
–  Marketing environment

•  Getting a product to market early may be more
important than finding defects in the program

2

5

•  Careful planning is required to get the most
out of testing and inspection processes

•  Planning should start early in the
development process

•  The plan should identify the balance
between static verification and testing

•  Test planning is about defining standards
for the testing process rather than
describing product tests

V & V planning
6

Software inspections

•  Involve people examining the source
representation with the aim of discovering
anomalies and defects

•  Do not require execution of a system so
may be used before implementation

•  May be applied to any representation of
the system (requirements, design, test
data, etc.)

•  Very effective technique for discovering
errors

7

Inspection success

•  Many different defects may be
discovered in a single inspection
–  In testing, one defect may mask another

so several executions are required
•  The reuse domain and programming

knowledge
–  reviewers are likely to have seen the

types of error that commonly arise

8

Inspections and testing

•  Inspections and testing are complementary
and not opposing verification techniques

•  Both should be used during the V & V
process

•  Inspections can check conformance with a
specification but not conformance with the
customer’s real requirements

•  Inspections cannot check characteristics
such as performance, usability, etc.

3

9

Program inspections

•  Formalized approach to document reviews
•  Intended explicitly for defect

DETECTION (not correction)
•  Defects may be logical errors, anomalies in

the code that might indicate an erroneous
condition (e.g. an uninitialized variable) or
non-compliance with standards

10

Inspection pre-conditions

•  A precise specification must be available
•  Team members must be familiar with the

organization standards
•  Syntactically correct code must be available
•  An error checklist should be prepared
•  Management must accept that inspection will

increase costs early in the software process
•  Management must not use inspections for staff

appraisal

11

The inspection process

Inspection
meeting

Individual
preparation

Overview

Planning

Rework

Follow-up

12

Inspection procedure

•  System overview presented to inspection
team

•  Code and associated documents are
distributed to inspection team in advance

•  Inspection takes place and discovered
errors are noted

•  Modifications are made to repair
discovered errors

•  Re-inspection may or may not be required

4

13

Inspection teams

•  Made up of at least 4 members
•  Author of the code being inspected
•  Inspector who finds errors,

omissions and inconsistencies
•  Reader who reads the code to the

team
•  Moderator who chairs the meeting

and notes discovered errors

14

Inspection checklists

•  Checklist of common errors should be used
to drive the inspection

•  Error checklist is programming language
dependent

•  The 'weaker' the type checking, the larger
the checklist

•  Examples: Initialization, loop termination,
array bounds, etc.

Inspection checks Inspection checks

5

17

Inspection rate

•  500 statements/hour during overview
•  125 source statement/hour during

individual preparation
•  90-125 statements/hour can be inspected
•  Inspection is therefore an expensive

process
•  Inspecting 500 lines costs about 40 man/

hours
effort = $$

18

Automated static analysis

•  Static analysers are software tools for
source text processing

•  They parse the program text and try to
discover potentially erroneous conditions
and bring these to the attention of the V &
V team

•  Very effective as an aid to inspections. A
supplement to but not a replacement for
inspections

19

Static analysis checks
20

Stages of static analysis

•  Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable
code, etc.

•  Data use analysis. Detects uninitialized
variables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.

•  Interface analysis. Checks the consistency of
routine and procedure declarations and their
use

6

21

Stages of static analysis

•  Information flow analysis. Identifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review

•  Path analysis. Identifies paths through the
program and sets out the statements
executed in that path. Again, potentially
useful in the review process

•  Both these stages generate vast amounts
of information. Must be used with care.

LINT static analysis
138% more lint_ex.c

#include <stdio.h>

printarray (Anarray)

 int Anarray;

{

 printf(“%d”,Anarray);

}

main ()

{

 int Anarray[5]; int i; char c;

 printarray (Anarray, i, c);

 printarray (Anarray) ;

}

139% cc lint_ex.c

140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set

lint_ex.c(10): warning: i may be used before set

printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) ::
lint_ex.c(11)

printf returns value which is always ignored

23

Use of static analysis

•  Particularly valuable when a language
such as C is used which has weak
typing and hence many errors are
undetected by the compiler

•  Less cost-effective for languages like
Java that have strong type checking
and can therefore detect many errors
during compilation

