

What is Testing?

- Process of determining whether a task has been correctly carried out [Schach '96]
- · Goals of testing
 - Reveal Faults
 - · Correctness
 - Reliability
 - Usability
 - Robustness
 - Performance

Conflicting Goals?

Execution-based Testing

- · Generating and Executing Test Cases on the Software
- Types of Execution-based Testing
 - Testing to Specifications
 - · Black-box Testing
 - Testing to Code
 - Glass-box (White-box) Testing

Types of Testing

- · Execution-based Testing
- · Non-execution based Testing

Discussion

Black-box Testing

- Discussion: MAC/ATM Machine Example
 - Specs
 - · Cannot withdraw more than \$300
 - Cannot withdraw more than your account balance

White-box Testing

· Example

```
Generate test cases
      x: 1..1000;
                                         to cover each statement
1 INPUT-FROM-USER(x);
     If (x <= 300) {
            INPUT-FROM-FILE(BALANCE);
2
            If (x <= BALANCE)
3
                   GiveMoney x;
4
            else Print "You don't have $x in your account!!"}
     else
5
            Print "You cannot withdraw more than $300";
     Eject Card;
```

Discussion

- · Which is superior?
- · Each technique has its strengths -Use both

Determining Adequacy

- · Statement coverage
- · Branch coverage
- · Path coverage
- · All-def-use-path coverage

Surprise Quiz

Determine test cases so that each print statement is executed at least once

```
input(x);
if (x < 100)
        print "Line 1";
else {
        if (x < 50) print "Line 2"
        else print "Line 3";
```

Non-execution Based

- · Walkthroughs
 - Manual simulation by team leader
- Inspections
 - Developer narrates the reading
- · Key Idea
 - Review by a team of experts: Syntax checker?
- · Code Readings
- · Formal Verification of Correctness
 - Very Expensive
 - Justified in Critical Applications
- · Semi-formal: Some Assertions

Simulation

- Integration with system hardware is central to the design
- · Model the external hardware
- · Model the interface
- Examples
- Discussion

Boundary-value Analysis

- Partition the program domain into input classes
- Choose test data that lies both inside each input class and at the boundary of each class
- Select input that causes output at each class boundary and within each class
- · Also known as stress testing

Testing Approaches

- · Top-down
- · Bottom-up
- · Big Bang
- · Unit testing
- · Integration testing
- Stubs
- · System testing

Mutation Testing

- Errors are introduced in the program to produce "mutants"
- Run test suite on all mutants and the original program

Test Case Generation

- · Test Input to the Software
- Some researchers/authors also define the test case to contain the expected output for the test input

Category-partition Method

- · Key idea
 - Method for creating functional test suites
 - Role of test engineer
 - Analyze the system specification
 - Write a series of formal test specifications
 - Automatic generator
 - Produces test descriptions

Steps

- Decompose the functional specification into functional units
 - Characteristics of functional units
 - · They can be tested independently
 - Examples
 - A top-level user command
 - Or a function
- · Decomposition may require several stages
- Similar to high-level decomposition done by software designers
 - May be reused, although independent decomposition is recommended

Steps

- · Examine each functional unit
 - Identify parameters
 - · Explicit input to the functional unit
 - Environmental conditions
 - · Characteristics of the system's state
- · Test Cases
 - Specific values of parameters
 - And environmental conditions

Steps

- Develop "Formal Test Specification" for each functional unit
 - List of categories
 - Lists of choices within each category
- · Constraints
- Automatically produces a set of "test frames"
 - Consists of a set of choices

Steps

- "Test cases are chosen to maximize chances of finding errors"
- For each parameter & environmental condition
 - Find categories
 - · Major property or characteristic
 - Examples
 - Browsers, Operating Systems, array size
 - · For each category
 - Find choices
 - » Examples: (IE 5.0, IE 4.5, Netscape 7.0), (Windows NT, Linux), (100, 0, -1)

AI Planning Method

- · Key Idea
 - Input to Command-driven software is a sequence of commands
 - The sequence is like a plan
- · Scenario to test
 - Initial state
 - Goal state

Example

- · VCR command-line software
- · Commands
 - Rewind
 - If at the end of tape
 - Play
 - · If fully rewound
 - Eject
 - · If at the end of tape
 - Load
 - If VCR has no tape

Preconditions & Effects

```
    Rewind
```

- Precondition: end_of_tape

- Effects: ¬end_of_tape

· Play

- Precondition: -end_of_tape

- Effects: end_of_tape

· Eject

- Precondition: end_of_tape

- Effects: ¬has_tape

· Load

- Precondition: -has_tape

- Effects: has_tape

Preconditions & Effects

Rewind

- Precondition: If at end of tape

- Effects: At beginning of tape

· Play

- Precondition: If at beginning of tape

- Effects: At end of tape

· Eject

- Precondition: If at end of tape

- Effects: VCR has no tape

· Load

- Precondition: If VCR has no tape

- Effects: VCR has tape

Initial and Goal States

- · Initial State
 - end_of_tape
- · Goal State
 - ¬end_of_tape
- · Plan?
 - Rewind

Initial and Goal States

- · Initial State
 - - end_of_tape & has_tape
- · Goal State
 - ¬has_tape
- · Plan?
 - Play
 - Eject

Preliminaries

- · Test data selection
 - What test cases
- · Test data adequacy criteria
 - When to stop testing
- Examples
 - Statement Coverage
 - Branch coverage
 - Def-use coverage
 - Path coverage

Test Coverage & Adequacy

- · How much testing is enough?
- · When to stop testing
- · Test data selection criteria
- · Test data adequacy criteria
 - Stopping rule
 - Degree of adequacy
- · Test coverage criteria
- Objective measurement of test quality

Goodenough & Gerhart ['75]

- · What is a software test adequacy criterion
 - Predicate that defines "what properties of a program must be exercised to constitute a thorough test", i.e., one whose successful execution implies no errors in a tested program

Uses of test adequacy

- · Objectives of testing
- · In terms that can be measured
 - For example branch coverage
- · Two levels of testing
 - First as a stopping rule
 - Then as a guideline for additional test cases

Others

- · Random testing
- · Statistical testing
- · Interface based

Categories of Criteria

- · Specification based
 - All-combination criterion
 - choices
 - Each-choice-used criterion
- · Program based
 - Statement
 - Branch
- Note that in both the above types, the correctness of the output must be checked against the specifications