Classification according to
underlying testing approach

+ Structural testing
- Coverage of a particular set of
elements in the structure of the
program
* Fault-based testing

- Some measurement of the fault
detecting ability of test sets

* Error-based testing
- Check on some error-prone points

Structural Testing

* Program-based structural testing

- Control-flow based adequacy criteria
+ Statement coverage
* Branch coverage

* Path coverage
- Length-i path coverage
* Multiple condition coverage
- All possible combinations of truth values of
predicates

- Data-flow based adequacy criteria

Structural Testing

- Data-flow based adequacy criteria
- All definitions criterion
- Each definition to some reachable use
- All uses criterion
- Definition to each reachable use
+ All def-use criterion
- Each definition to each reachable use

Fault-based Adequacy

* Error seeding

- Introducing artificial faults to
estimate the actual number of faults

* Program mutation testing

- Distinguishing between original and
mutants
+ Competent programmer assumption
- Mutants are close to the program
* Coupling effect assumption
- Simple and complex errors are coupled




Test Oracles

- Discussion

- Automation of oracle necessary
- Expected behavior given

- Necessary parts of an oracle

Test Oracle

- A test oracle determines whether a

system behaves correctly for test
execution

+ Webster Dictionary - Oracle

- a person giving wise or authoritative
decisions or opinions

- an authoritative or wise expression or
answer

Purpose of Test Oracle

- Sequential Systems

- Check functionality

* Reactive (event-driven) Systems
- Check functionality

- Timing

- Safety

Reactive Systems

* Complete specification requires use

of multiple computational paradigms

* Oracles must judge all behavioral

aspects in comparison with all
system specifications and
requirements

* Hence oracles may be developed

directly from formal specifications




Parts of an Oracle

* Oracle information
- Specifies what constitutes correct behavior
+ Examples: input/output pairs, embedded assertions
* Oracle procedure
- Verifies the test execution results with
respect to the oracle information
- Examples: equality
+ Test monitor
- Captures the execution information from the
run-time environment

+ Examples
- Simple systems: directly from output

- Reactive systems: events, timing information, stimuli,
and responses

Regression Testing

+ Developed first version of software
* Adequately tested the first version
* Modified the software; version 2 now

needs to be tested

+ How to test version 2?
+ Approaches

- Retest entire software from scratch

- Only test the changed parts, ignoring
unchanged parts since they have already
been tested

- Could modifications have adversely affected
unchanged parts of the software?

Regression Testing

- "Software maintenance task
performed on a modified program to
instill confidence that changes are
correct and have not adversely
affected unchanged portions of the
program.”

Regression Testing vs.

Development Testing
- During regression testing, an
established test set may be
available for reuse

* Approaches
- Retest all

- Selective retest (selective regression
testing) < Main focus of research




Formal Definition

- Given a program P,

* its modified version P', and

‘atest set T
- used previously to test P

- find a way, making use of T to gain
sufficient confidence in the
correctness of P’

Regression Testing Steps

1. Identify the modifications that were
made to P

- Either assume availability of a list of
modifications, or

- Mapping of code segments of P to their
corresponding segments in P’
2. Select T' C T, the set of tests to re-
execute on P’
- May need results of step 1 above

- May need test history information, i.e., the
input, output, and execution history for
each test

Regression Testing Steps

3. Retest P' with T'
- Use expected output of P, if same

4. Create new tests for P', if needed
- Examine whether coverage criterion
is achieved
5. Create T"

- The new test suite, consisting of
tests from steps 2 and 4, and old
tests that were not selected

Selective Retesting

/ T\
Tests to rerun Tests not to rerun
+ Tests to rerun
- Select those tests that will produce
different output when run on P’

+ Modification-revealing test cases
+ It is impossible to always find the set of
modification-revealing test cases - (we cannot predict
when P’ will halt for a test)
- Select modification-traversing test cases

+ If it executes a hew or modified statement in P’ or
misses a statement in P’ that it executed in P




S1.
S2.
P3.
P4.
S5.

S6.
s7.

>
S8.
@ S9.

S10.

Procedure avg

count = 0
fread(fileptr,n)
while (not EOF) do
if (n<0)
return{error)

else
numarray[count] = n

count++
endif
fread(fileptr,n)
endwhile
avg = calcavg(numarray,count)

return(avg)

Fig. 1. Procedure avg and its CFG.

Table I. Test Information and Test History for Procedure avg

Test Information

Type Output Edges Traversed

Empty File 0 (entry, D), (D, S1), (S1, S2) (S2, P3)

(P3, 89), (S9, 810), (S10, exit)
-1 Error (entry, D) (D, S1), (S1, S2), (S2, P3),
(P3, P4), (P4, S5), (S5, exit)

(entry, D) (D, S1), (S1, S2), (S2, P3), (P3,
P4),
(P4, S6), (S6, S7), (S7, S8), (S8, P3),
(P3, S9), (89, S10), (S10, exit)

Test History

Edge TestsOnEdge(edge)
(entry, D) 111
(D, S1) 111
(81, S2) 111
(S2, P3) 111
(P3, P4) 011
(P3, S9) 101
(P4, S5) 010
(P4, S6) 001
(S5, exit) 010
(S6, S7) 001
(S7, S8) 001
(S8, P3) 001
(89, S10) 101
(810, exit) 101

Procedure avg2

S1’. count = 0
s2’. fread(fileptr,n)
P3’. while (not EOF) do

P4’ . if (n<0)
i s5a. print("bad input")
857, return(error)
else
867, numarray[count] = n
endif
s8’ . fread(fileptr,n)
endwhile
{ S89'. avg = calcavg(numarray,count)
S10’.return(avg)

Fig. 3. Procedure avg2 and its CFG.




Procedure avg
Procedure avg2
S1. count = 0
. S1’. count = 0
fread(fileptr,n
s2. (fileptr,m s2’. fread(fileptr,n)
p3. while (not EOF) do P3’. while (not EOF) do
P4, if (n<0) P4’ . if (n<0)
s5. return(error) i s5a. print("bad input")
else s57. return(error)
S6. numarray[count] = n else
s7. count++ S6’ . numarray[count] =
endif
S8. fread(fileptr,n) endif
) S8’ . fread(fileptr,n)
endwhile endwhile
89. avg = calcavg(numarray,count)] S9’. avg = calcavg(numarray,count)
810. return(avg) S10’ .return(avyg)

}
il
Cexid i

€

T = {t2, 13}

Cost of Regression Testing

Cost = C, + Retest All Cost = C,

Selective Retest

We want C, < C,

Key is the test selection algorithm/technique

We want to maintain the same “quality of testing”

Factors to consider

Testing costs

Fault-detection ability

Test suite size vs. fault-detection
ability

Specific situations where one
technique is superior to another




Data-flow Testing All Definitions Criterion

A set P of execution l:r‘ea@

paths satisfies the all-
definitions criterion iff
- for all definition
occurrences of a
variable x such that
- there is a use of x,
which is feasibly
reachable from that
definition,
- there is at least one
path p in P such that
+ p includes a subpath

through which the
definition of x reaches
7 2; some use occurrence of
x
All Uses Criterion All Uses Criterion
A set P of 1:read(x, y,@
execution paths
satisfies the all-
uses criterion iff 2: x

- for all definition
occurrences of a
variable x and all
use occurrences of
X,

+ that the definition
feasibly reaches,

- there is at least ~ .
one path p in P such 6‘@ ‘Q 2
that
+ p includes a subpath 4 21
through which that 7 ®@@ ©

definition reaches

/
the use 8: x ::@@ 2:




All DU-paths criterion

* A set P of execution paths satisfies

the all-DV paths criterion iff

- for all definitions of a variable x and
all paths q through which that
definition reaches a use of x,

- there is at least one path p in P such
that

* q is a subpath of p and q is cycle-free




