User Interface Design

Designing effective interfaces for software systems

Importance of user interface

• System users often judge a system by its interface rather than its functionality
• A poorly designed interface can cause a user to make catastrophic errors
• Poor user interface design is the reason why so many software systems are never used
Graphical user interfaces

• Most users of business systems interact with these systems through graphical user interfaces (GUIs)
 - although, in some cases, legacy text-based interfaces are still used

GUI characteristics

• Windows
• Icons
• Menus
• Pointing Devices
• Graphics
GUI advantages

- They are easy to learn and use
 - Users without experience can learn to use the system quickly
- The user may switch quickly from one task to another and can interact with several different applications
 - Information remains visible in its own window when attention is switched
- Fast, full-screen interaction is possible with immediate access to anywhere on the screen

User-centred design

- User-centred design is an approach to UI design where the needs of the user are paramount and where the user is involved in the design process
- UI design *always* involves the development of prototype interfaces
User interface design process

- Analyze and understand user activities
- Produce paper-based design prototype
- Evaluate design with end-users
- Design prototype
- Produce dynamic design prototype
- Evaluate design with end-users
- Executable prototype
- Implement final user interface

UI design principles

- UI design must take account of the needs, experience and capabilities of the system users
- Designers should be aware of people’s physical and mental limitations (e.g. limited short-term memory) and should recognize that people make mistakes
- UI design principles underlie interface designs although not all principles are applicable to all designs
User interface design principles

<table>
<thead>
<tr>
<th>Principle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User familiarity</td>
<td>The interface should use terms and concepts which are drawn from the experience of the people who will make most use of the system.</td>
</tr>
<tr>
<td>Consistency</td>
<td>The interface should be consistent in that, wherever possible, comparable operations should be activated in the same way.</td>
</tr>
<tr>
<td>Minimal surprise</td>
<td>Users should never be surprised by the behaviour of a system.</td>
</tr>
<tr>
<td>Recoverability</td>
<td>The interface should include mechanisms to allow users to recover from errors.</td>
</tr>
<tr>
<td>User guidance</td>
<td>The interface should provide meaningful feedback when errors occur and provide context-sensitive user help facilities.</td>
</tr>
<tr>
<td>User diversity</td>
<td>The interface should provide appropriate interaction facilities for different types of system user.</td>
</tr>
</tbody>
</table>

Design principles

- **User familiarity**
 - The interface should be based on user-oriented terms and concepts rather than computer concepts.
 - For example, an office system should use concepts such as letters, documents, folders etc., rather than directories, file identifiers, etc.

- **Consistency**
 - The system should display an appropriate level of consistency. Commands and menus should have the same format, command punctuation should be similar, etc.

- **Minimal surprise**
 - If a command operates in a known way, the user should be able to predict the operation of comparable commands
Design principles

• Recoverability
 - The system should provide some resilience to user errors and allow the user to recover from errors. This might include an UNDO facility, confirmation of destructive actions, 'soft' deletes, etc.

• User guidance
 - Some user guidance such as help systems, on-line manuals, etc. should be supplied

• User diversity
 - Interaction facilities for different types of user should be supported. For example, some users have seeing difficulties and so larger text should be available

User-system interaction

• Two problems must be addressed in interactive systems design
 - How should information from the user be provided to the computer system?
 - How should information from the computer system be presented to the user?

• User interaction and information presentation may be integrated through a coherent framework
Interaction styles

- Direct manipulation
- Menu-based (Menu selection)
- Form fill-in
- Command language
- Natural language

Advantages and disadvantages

<table>
<thead>
<tr>
<th>Interaction style</th>
<th>Main advantages</th>
<th>Main disadvantages</th>
<th>Application examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct manipulation</td>
<td>• Fast and intuitive interaction</td>
<td>• May be hard to implement</td>
<td>• Video games</td>
</tr>
<tr>
<td></td>
<td>• Easy to learn</td>
<td>• Only suitable where there is a visual metaphor for tasks and objects</td>
<td>• CAD systems</td>
</tr>
<tr>
<td>Menu selection</td>
<td>• Avoids user error</td>
<td>• Slow for experienced users</td>
<td>• Most general-purpose systems</td>
</tr>
<tr>
<td></td>
<td>• Little typing required</td>
<td>• Can become complex if many menu options</td>
<td></td>
</tr>
<tr>
<td>Form fill-in</td>
<td>• Simple data entry</td>
<td>• Takes up a lot of screen space</td>
<td>• Stock control, Personal loan processing</td>
</tr>
<tr>
<td>Command language</td>
<td>• Powerful and flexible</td>
<td>• Hard to learn</td>
<td>• Operating systems, Library information retrieval systems</td>
</tr>
<tr>
<td>Natural language</td>
<td>• Accessible to casual users</td>
<td>• Requires more typing</td>
<td>• Timetable systems</td>
</tr>
<tr>
<td></td>
<td>• Easily extended</td>
<td>• Natural language understanding systems are unreliable</td>
<td>• WWW information retrieval systems</td>
</tr>
</tbody>
</table>
Direct manipulation advantages

• Users feel in control of the computer and are less likely to be intimidated by it
• User learning time is relatively short
• Users get immediate feedback on their actions so mistakes can be quickly detected and corrected

Direct manipulation problems

• The derivation of an appropriate information space model can be very difficult
• Given that users have a large information space, what facilities for navigating around that space should be provided?
• Direct manipulation interfaces can be complex to program and make heavy demands on the computer system
Menu systems

• Users make a selection from a list of possibilities presented to them by the system
• The selection may be made by pointing and clicking with a mouse, using cursor keys or by typing the name of the selection
• May make use of simple-to-use terminals such as touch-screens

Advantages of menu systems

• Users need not remember command names as they are always presented with a list of valid commands
• Typing effort is minimal
• User errors are trapped by the interface
• Context-dependent help can be provided. The user's context is indicated by the current menu selection
Problems with menu systems

- Actions that involve logical conjunction (and) or disjunction (or) are awkward to represent.
- Menu systems are best suited to presenting a small number of choices. If there are many choices, some menu structuring facility must be used.
- Experienced users find menus slower than command language.

Command interfaces

- User types commands to give instructions to the system e.g. UNIX.
- May be implemented using cheap terminals.
- Easy to process using compiler techniques.
- Commands of arbitrary complexity can be created by command combination.
- Concise interfaces requiring minimal typing can be created.
Command interfaces problems

• Users have to learn and remember a command language. Command interfaces are therefore unsuitable for occasional users
• Users make errors in commands. An error detection and recovery system is required
• System interaction is through a keyboard so typing ability is required

Command languages

• Often preferred by experienced users because they allow for faster interaction with the system
• Not suitable for casual or inexperienced users
• May be provided as an alternative to menu commands (keyboard shortcuts). In some cases, a command language interface and a menu-based interface are supported at the same time
Natural language interfaces

• The user types a command in a natural language. Generally, the vocabulary is limited and these systems are confined to specific application domains (e.g. timetable enquiries)
• NL processing technology is now good enough to make these interfaces effective for casual users but experienced users find that they require too much typing

Multiple user interfaces

- Graphical user interface
- Command language interface
- GUI manager
- Command language interpreter
- Operating system
Information presentation

- Information presentation is concerned with presenting system information to system users.
- The information may be presented directly (e.g. text in a word processor) or may be transformed in some way for presentation (e.g. in some graphical form).
- The Model-View-Controller approach is a way of supporting multiple presentations of data.
Information presentation

- **Static information**
 - Initialized at the beginning of a session. It does not change during the session

- **Dynamic information**
 - Changes during a session and the changes must be communicated to the system user

- **Both may be either numeric or textual**
Information display factors

• Is the user interested in precise information or data relationships?
• How quickly do information values change? Must the change be indicated immediately?
• Must the user take some action in response to a change?
• Is there a direct manipulation interface?
• Is the information textual or numeric? Are relative values important?

Alternative information presentations

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>2842</td>
<td>2851</td>
<td>3164</td>
<td>2789</td>
<td>1273</td>
<td>2835</td>
</tr>
</tbody>
</table>

![Bar chart showing values for each month]
Analog vs. digital presentation

- Digital presentation
 - Compact - takes up little screen space
 - Precise values can be communicated

- Analog presentation
 - Easier to get an 'at a glance' impression of a value
 - Possible to show relative values
 - Easier to see exceptional data values

Dynamic information display

- Dial with needle
- Pie chart
- Thermometer
- Horizontal bar
Displaying relative values

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>300</td>
<td>75</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
</tr>
</tbody>
</table>

Text highlighting

The filename you have chosen has been used. Please choose another name.

Ch. 16 User interface design

OK Cancel
User documentation

• As well as on-line information, paper documentation should be supplied with a system
• Documentation should be designed for a range of users from inexperienced to experienced
• As well as manuals, other easy-to-use documentation such as a quick reference card may be provided

Document types

• Functional description
 - Brief description of what the system can do
• Introductory manual
 - Presents an informal introduction to the system
• System reference manual
 - Describes all system facilities in detail
• System installation manual
 - Describes how to install the system
• System administrator’s manual
 - Describes how to manage the system when it is in use
User interface evaluation

- Some evaluation of a user interface design should be carried out to assess its suitability
- Full scale evaluation is very expensive and impractical for most systems
- Ideally, an interface should be evaluated against a usability specification. However, it is rare for such specifications to be produced

Usability attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learnability</td>
<td>How long does it take a new user to become productive with the system?</td>
</tr>
<tr>
<td>Speed of Operation</td>
<td>How well does the system response match the user's work practice?</td>
</tr>
<tr>
<td>Robustness</td>
<td>How tolerant is the system of user error?</td>
</tr>
<tr>
<td>Recoverability</td>
<td>How good is the system at recovering from user error?</td>
</tr>
<tr>
<td>Adaptability</td>
<td>How closely is the system tied to a single model of work?</td>
</tr>
</tbody>
</table>
Simple evaluation techniques

• Questionnaires for user feedback
• Video recording of system use and subsequent tape evaluation
• Instrumentation of code to collect information about facility use and user errors
• The provision for on-line user feedback