
1

1

System types

•  Personal systems that are designed to
run on a personal computer or
workstation

•  Distributed systems where the
system software runs on a loosely
integrated group of cooperating
processors linked by a network

2

Distributed systems

•  Virtually all large computer-based
systems are now distributed systems

•  Information processing is distributed
over several computers rather than
confined to a single machine

•  Distributed software engineering is
now very important

2

3 Distributed system
characteristics

•  Resource sharing
•  Concurrency
•  Scalability
•  Fault tolerance
•  Transparency

4

Distributed system disadvantages

•  Complexity
•  Security
•  Manageability
•  Unpredictability

3

5 Distributed Systems
Architectures

•  Architectural design for software
that executes on more than one
processor

Issues in distributed system
design

Design issue Description
Resource
identification

The resources in a distributed system are spread across different
computers and a naming scheme has to be devised so that users can
discover and refer to the resources that they need. An example of such
a naming scheme is the URL (Uniform Resource Locator) that is used
to identify WWW pages. If a meaningful and universally understood
identification scheme is not used then many of these resources will be
inaccessible to system users.

Communications The universal availability of the Internet and the efficient
implementation of Internet TCP/IP communication protocols means
that, for most distributed systems, these are the most effective way for
the computers to communicate. However, where there are specific
requirements for performance, reliability etc. alternative approaches to
communications may be used.

Quality of
service

The quality of service offered by a system reflects its performance,
availability and reliability. It is affected by a number of factors such as
the allocation of processes to processors in the system, the distribution
of resources across the system, the network and the system hardware
and the adaptability of the system.

Software
architectures

The software architecture describes how the application functionality
is distributed over a number of logical components and how these
components are distributed across processors. Choosing the right
architecture for an application is essential to achieve the desired
quality of service.

4

7

Topics covered

•  Multiprocessor architectures
•  Client-server architectures
•  Distributed object architectures
•  CORBA

8

Distributed systems architectures

•  Multiprocessor architectures
–  System composed of multiple processes that

may execute on different processors
•  Client-server architectures

–  Distributed services which are called on by
clients. Servers that provide services are
treated differently from clients that use
services

•  Distributed object architectures
–  No distinction between clients and servers. Any

object on the system may provide and use
services from other objects

5

9

Multiprocessor architectures

•  Simplest distributed system model
•  System composed of multiple processes

which may execute on different processors
•  Architectural model of many large real-

time systems
•  Distribution of process to processor may

be pre-ordered or may be under the
control of a dispatcher

10

A multiprocessor traffic control system

Traffic lights

Light
control
process

Traffic light control
processor

Traffic flow
processor

Operator consoles
Traffic flow sensors

and cameras

Sensor
processor

Sensor
control
process

Display
process

6

11

Client-server architectures

•  The application is modelled as a set of
services that are provided by servers and a
set of clients that use these services

•  Clients know of servers but servers need
not know of clients

•  Clients and servers are logical processes
•  The mapping of processors to processes is

not necessarily 1 : 1

12

A client-server system

s1

s2 s3

s4
c1

c2
c3

c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

7

13

Computers in a C/S network

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

14

Thin and fat clients

•  Thin-client model
–  In a thin-client model, all of the application

processing and data management is carried out
on the server. The client is simply responsible
for running the presentation software.

•  Fat-client model
–  In this model, the server is only responsible for

data management. The software on the client
implements the application logic and the
interactions with the system user.

8

15

Thin and fat clients

Thin-client

model

Fat-client

model Client

Client

Server

Data management
Application
processing

Presentation

Server

Data
management

Presentation
Application processing

16

Thin client model

•  Used when legacy systems are
migrated to client server
architectures.
–  The legacy system acts as a server in its

own right with a graphical interface
implemented on a client

•  A major disadvantage is that it places
a heavy processing load on both the
server and the network

9

17

Fat client model

•  More processing is delegated to the client
as the application processing is locally
executed

•  Most suitable for new C/S systems where
the capabilities of the client system are
known in advance

•  More complex than a thin client model
especially for management. New versions of
the application have to be installed on all
clients

18

A client-server ATM system

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

10

19

Layered application architecture

•  Presentation layer
–  Concerned with presenting the results of a

computation to system users and with collecting
user inputs

•  Application processing layer
–  Concerned with providing application specific

functionality e.g., in a banking system, banking
functions such as open account, close account,
etc.

•  Data management layer
–  Concerned with managing the system databases

20

Application layers

Presentation layer

Application processing
layer

Data management
layer

11

21

Three-tier architectures

•  In a three-tier architecture, each of the
application architecture layers may
execute on a separate processor

•  Allows for better performance than a thin-
client approach and is simpler to manage
than a fat-client approach

•  A more scalable architecture - as demands
increase, extra servers can be added

22

A 3-tier C/S architecture

Client

Server

Data
management

Presentation

Server

Application
processing

12

23

An internet banking system

Database server

Customer
account
database

Web server

Client

Client

Client

Client

Account service
provision

SQL

SQL query

HTTP interaction

24

Use of C/S architectures

Architecture Applications
Two-tier C/S
architecture with
thin clients

Legacy system applications where separating application
processing and data management is impractical
Computationally-intensive applications such as compilers with
little or no data management
Data-intensive applications (browsing and querying) with little
or no application processing.

Two-tier C/S
architecture with
fat clients

Applications where application processing is provided by
COTS (e.g. Microsoft Excel) on the client
Applications where computationally-intensive processing of
data (e.g. data visualisation) is required.
Applications with relatively stable end-user functionality used
in an environment with well-established system management

Three-tier or
multi-tier C/S
architecture

Large scale applications with hundreds or thousand s of clients
Applications where both the data and the application are
volatile.
Applications where data from multiple sources are integrated

13

25

Distributed object architectures

•  There is no distinction in a distributed
object architectures between clients and
servers

•  Each distributable entity is an object that
provides services to other objects and
receives services from other objects

•  Object communication is through a
middleware system called an object
request broker (software bus)

•  However, more complex to design than C/S
systems

26

Distributed object architecture

Software bus

o1 o2 o3 o4

o5 o6

S (o1) S (o2) S (o3) S (o4)

S (o5) S (o6)

14

27 Advantages of distributed object
architecture

•  It allows the system designer to delay
decisions on where and how services should
be provided

•  It is a very flexible and scaleable system
architecture that allows new resources to
be added to it as required

•  It is possible to reconfigure the system
dynamically with objects migrating across
the network as required

28 Uses of distributed object
architecture

•  As a logical model that allows you to
structure and organize the system. In this
case, you think about how to provide
application functionality solely in terms of
services and combinations of services

•  As a flexible approach to the
implementation of client-server systems.
The logical model of the system is a client-
server model but both clients and servers
are realized as distributed objects
communicating through a software bus

15

29

Middleware

•  Software that manages and supports
the different components of a
distributed system. In essence, it sits
in the middle of the system

•  Middleware is usually off-the-shelf
rather than specially written
software

30

CORBA

•  Common Object Request Broker
Architecture (CORBA) is an international
standard for an Object Request Broker -
middleware to manage communications
between distributed objects

•  Several implementation of CORBA are
available

•  Distributed Component Object Model
(DCOM) is an alternative approach by
Microsoft to object request brokers

•  CORBA has been defined by the Object
Management Group (OMG)

16

31

Application structure

•  Application objects
•  Standard objects, defined by the OMG,

for a specific domain e.g. insurance
•  Fundamental CORBA services such as

directories and security management
•  Horizontal (i.e. cutting across applications)

facilities such as user interface facilities

32

CORBA application structure

CORBA services

Object request broker

Domain
facilities

Horizontal
CORBA facilities

Application
objects

17

33

CORBA standards

•  An object model for application objects
–  A CORBA object is an encapsulation of state

with a well-defined, language-neutral interface
defined in an IDL (interface definition
language)

•  An object request broker that manages
requests for object services

•  A set of general object services of use to
many distributed applications

34

CORBA objects

•  CORBA objects are comparable, in
principle, to objects in C++ and Java

•  They MUST have a separate interface
definition that is expressed using a
common language (IDL) similar to C++

•  There is a mapping from this IDL to
programming languages (C++, Java, etc.)

•  Therefore, objects written in different
languages can communicate with each other

18

35

Object request broker (ORB)

•  The ORB handles object communications.
It knows of all objects in the system and
their interfaces

•  Using an ORB, the calling object binds an
IDL stub that defines the interface of the
called object

•  Calling this stub results in calls to the ORB
which then calls the required object
through a published IDL skeleton (links the
interface to the service implementation)

36

ORB-based object communications

o1 o2

S (o1) S (o2)

IDL
stub

IDL
skeleton

Object Request Broker

19

37

Inter-ORB communications

•  ORBs handle communications between
objects executing on the same
machine

•  Several ORBS may be available and
each computer in a distributed
system will have its own ORB

•  Inter-ORB communications are used
for distributed object calls

38

Inter-ORB communications

o1 o2

S (o1) S (o2)

IDL IDL

Object Request Broker

o3 o4

S (o3) S (o4)

IDL IDL

Object Request Broker

Network

20

39

CORBA services

•  Naming and trading services
–  These allow objects to discover and refer to

other objects on the network
•  Notification services

–  These allow objects to notify other objects
that an event has occurred

•  Transaction services
–  These support atomic transactions and rollback

on failure

40

Additional Resources on CORBA

•  http://www.corba.org/
•  CORBA Success Stories

http://www.corba.org/success.htm
–  The Weather Channel (TWC) used CORBA and

Linux to develop a system that provides
reliability, doesn't require a high level of
operational support and offers the ability to
have detailed data logging. They were able to
meet these needs and slash their software
development time from months to weeks.

–  http://www.corba.org/industries/publish/
twc.htm

