Software Testing

Test Case
Generation

Software
to be tested

Output

No Tesf Coverage

Yes

Verification

/A
Zal)

Testing: Our Experiences

N
Software
to be tested/

Output

J 8\

N
2

A Real Testing Example

Test Cases
T

Just a list.

11,3,2} .
—mm'ed list.

{1,2,3} |

{3,2,3}

Repdated entry.
f Embtv list.

Negative numbers.

{1
{-1,-2} D)

| {-2,-1} |

Output

SPECS:
Takes a list
of numbers;

returns a
sorted list.

Autogated Testing

Automated Testing

Test Case

Generator

s (iﬁy%\ A Test Case
==

Z Wi
R/

Test Case
Generation

Software
to be tested
\)

Software
to be tested
\)

Verification
/5() Veroi;;ier
(_} pr——
Qutput ‘\ 8 Output Test Oracle

Coverage

Test Coverage Evaluator

Yes

Regression Testing
Original Original Original
Test Software Software
Cases
Modified Modified {l\'lee s“’"
Software Software Cases

What is Testing?

Process of determining whether a task has
been correctly carried out [Schach '96]
Goals of testing
Reveal Faults

Correctness

Reliability

Usability

Robustness

Performance

Execution-based Testing

Types of Testing

Execution-based Testing
Non-execution based Testing

Discussion

Black-box Testing

Generating and Executing Test Cases on the
Software
Types of Execution-based Testing
Testing to Specifications
Black-box Testing
Testing to Code
Glass-box (White-box) Testing

Discussion: MAC/ATM Machine Example
Specs
Cannot withdraw more than $300
Cannot withdraw more than your account balance

x = Software

White-box Testing

Generate test cases

E)ia EnFl)l)%O to cover each statement

1 INPUT-FROM-USER(x);
If (x <= 300) {

2 INPUT-FROM-FILE(BALANCE);
If (x <= BALANCE)
3 GiveMoney x;
4 else Print "You don't have $x in your account!!I"}
else
5 Print “You cannot withdraw more than $300";
6 Eject Card;

Determining Adequacy

Discussion

Which is superior?
Each technique has its strengths — Use both

Surprise Quiz

Statement coverage
Branch coverage

Path coverage
All-def-use-path coverage

Determine test cases so that each print
statement is executed at least once

input(x);
if (x < 100) x<100,
print “Line 1"; o G
else { x>=100 x>=100

if (x < 50) print "Line 2"

else print "Line 3";

Non-execution Based

Walkthroughs
Manual simulation by team leader
Inspections
Developer narrates the reading
Key Idea
Review by a team of experts: Syntax checker?
Code Readings
Formal Verification of Correctness
Very Expensive
Justified in Critical Applications
Semi-formal: Some Assertions

Boundary-value Analysis

Simulation

Integration with system hardware is central
to the design

Model the external hardware

Model the interface

Examples
Discussion

Testing Approaches

Partition the program domain into input
classes

Choose test data that lies both inside each
input class and at the boundary of each class
Select input that causes output at each class
boundary and within each class

Also known as stress testing

Top-down
Bottom-up
Big Bang

Unit testing
Integration testing
Stubs

System testing

Mutation Testing

Test Case Generation

Errors are introduced in the program to
produce “mutants”

Run test suite on all mutants and the original
program

Test Input to the Software

Some researchers/authors also define the
test case to contain the expected output for
the test input

Category-partition Method

Steps

Key idea
Method for creating functional test suites
Role of test engineer

Analyze the system specification
Write a series of formal test specifications

Automatic generator
Produces test descriptions

Decompose the functional specification into
functional units
Characteristics of functional units
They can be tested independently
Examples

A top-level user command
Or a function

Decomposition may require several stages
Similar to high-level decomposition done by
software designers

May be reused, although independent decomposition is
recommended

Steps Steps

Examine each functional unit “Test cases are chosen to maximize chances of
H "
Identify parameters finding errors _ .
Explicit input to the functional unit For each parameter & environmental condition
) " Find categories
Environmental conditions Major prcg>perty or characteristic
Characteristics of the system's state Examples
Test Cases Browsers, Operating Systems, array size
. For each category
Specific values of parameters Find choices
And environmental conditions Examples: (IE 5.0, IE 4.5, Netscape 7.0), (Windows NT, Linux), (100, o,
-1)

Steps

An Example Command

Command:

find
Develop “Formal Test Specification” for each
functional unit

Syntax:
find <pattern> <file>

List of categories

Function:
. . L The {ind command is used (o locate one or more instapces of
Lists of choices within each category a given pauern in a text file. All lines i the file that contain
H the pattern are written to standard output. A line containing
Constraints the pattern is written only once, regardless of the number of
Automatically produces a set of “test frames” times the pattern occurs in it.
Consists of a set of choices The pattern is any sequence of characters whose length does

not exceed the maximum length of a line in the file. To
include a blank in the pattern, the entire paltern must be
enclosed in guotes (). To include a quotation mark in the
pattern, two quotes in a row {“*) must be used.

Examples of Find Usage

Analyzing the Specs

Examples:
find john myfile
displays lines in the file myfile which contain john

find "john swith" myfile
displays lines in the file myfile which contain john smith

find “john"" smith” wmylile
displays lines in the file myfile which contain john” smith

Analyzing the Specs (2)

Individual function that can be tested separately
Two parameters
Pattern
File
Pattern characteristics
From specs
Length
Enclosed in quotes or not
Embedded blanks or not
Embedded quotes or not
Not from specs
Quoted must have blanks?
Successive quotes?

Test Specs - Parameters

Paraneters:

File

Name is a parameter
File exists
Ornot

File properties are environmental characteristics
Number of occurrences of pattern in file
Number of occurrences of patternin a line
Maximum line length in a file

Pattern size:
empty
single character
many character
longer than any line in the file

Quoting:
pattern is quoted
pattern is not quoted
pattern is improperly quoted

Embedded blanks:
no embedded blank
one embedded blank
several embedded blanks

Embedded quotes:
no embedded quotes
one embedded quote
several embedded quotes

File name:
good file name
no file with this name
omitted

Test Specs - Environment

Number of Test Frames

Environments:
Number of occurrences of pattexn in file:
none
exactly one
more than one

Fattern occurrences on target line:

assumes line contains the pattern
one
more than one

Contradictory Requirements

Can we even generate such a test case?

Pattern size : empty

Quoting : pattern is quoted

Embedded blanks : several embedded blanks
Embedded quotes : no embedded quotes

File name : good file name

Numbexr of occurrences of pattern in file : none
Pattern occurrences on target line : one

1944

Constraints

Properties
[property A, B, ...]
A and B are property names
E.g., [property Empty]
Selector expression
[if Al
E.g., [if Empty]

Parameters:

Pattern size:

empty [property Empty]
single character [property NonEmpty]
many character [property NonEmpty}

longer than any line in the file [property NonEmpty]
Quoting:
pattern is quoted [property Quoted]
pattern is not quoted [if NonEmpty}
pattern is improperly quoted [if NonEmpty]
Embedded blanks:
no embedded blank [if NonEmpty]
one embedded blank [if NonEmpty and Quoted]
several embedded blanks (if NonEmpty and Quoted]
Embedded quotes:
no embedded quotes [if NonEmpty]
one embedded quote [if NonEmpty]
several embedded quotes [if NonEmpty]
File name:
good file name
no file with this name
omitted
Environments:
Number of occurrences of pattern in file:
none {if NonEmpty)
exactly one {if NonEmpty] [property Matchj
more than one {if NonEmpty] [property Match]
Pattern occurrences on target line:
assumes line contains the pattern
cne [if Match]
more than one [if Match]

Parameters:

Pattern size:
empty . [property Empty]
single character [property NonEmpty]
many character [property NonEmpty}

longer than any line in the file (error]

Quoting:
pattern is quoted [property Quoted]
pattern is . not guoted [if NonEmpty]
pattern is improperly guoted {exror}

Embedded blanks:
no embedded blarnk [if NonEmpty)
one embedded blank [if NonEmpty and Quoted]
several embedded blanks [if NonEmpty and Quoted]

Embedded quotes: -

no embeddeéd quote [if NonEmpty}

one embedded quote [if NonEmpty]

several embedded quotes [if NonEmpty) [single]
File name:

good file name

no file with this name [exror}

omitted - (error]

Environments:
Number of occurrences of pattern in file:

none [if NonEmpty] ([single]
exactly one {if NonEmpty] [property Match]
more than one {if NonEmpty] [property Match]

Pattern occurrences on target line:

assumes line contains the pattern
one [if Match}
more than one fif Matchl [single]

Number of Test Frames

678

Can we reduce them?

Number of Test Frames

[error]
125
[single]

40

10

Generating Test Cases

Use a constraint solver
Choose specific values that satisfy the
constraints

Example

VCR command-line software
Commands
Rewind
If at the end of tape
Play
If fully rewound
Eject
If at the end of tape
Load
If VCR has no tape

Al Planning Method

Key Idea

Input to Command-driven software is a sequence
of commands

The sequence is like a plan
Scenario to test

Initial state

Goal state

Preconditions & Effects

Rewind
Precondition: If at end of tape
Effects: At beginning of tape
Play
Precondition: If at beginning of tape
Effects: At end of tape
Eject
Precondition: If at end of tape
Effects: VCR has no tape
Load
Precondition: If VCR has no tape
Effects: VCR has tape

11

Preconditions & Effects

Rewind
Precondition: end_of_tape
Effects: —end_of_tape
Play
Precondition: —end_of_tape
Effects: end_of_tape
Eject
Precondition: end_of_tape
Effects: —~has_tape
Load
Precondition: —has_tape
Effects: has_tape

Initial and Goal States

Initial State
end_of_tape
Goal State
—-end_of_tape
Plan?
Rewind

Initial and Goal States

Initial State

-end_of_tape & has_tape
Goal State

-has_tape
Plan?

Play

Eject

Test Coverage & Adequacy

How much testing is enough?
When to stop testing
Test data selection criteria
Test data adequacy criteria
Stopping rule
Degree of adequacy
Test coverage criteria
Objective measurement of test quality

12

Preliminaries

Test data selection
What test cases
Test data adequacy criteria
When to stop testing
Examples
Statement Coverage
Branch coverage
Def-use coverage
Path coverage

Goodenough & Gerhart ['75]

What is a software test adequacy criterion

Predicate that defines “what properties of a
program must be exercised to constitute a
thorough test”, i.e., one whose successful
execution implies no errors in a tested program

Uses of test adequacy

Categories of Criteria

Objectives of testing
In terms that can be measured
For example branch coverage
Two levels of testing
First as a stopping rule

Then as a guideline for additional test cases

Specification based

All-combination criterion

choices

Each-choice-used criterion
Program based

Statement

Branch
Note that in both the above types, the correctness
of the output must be checked against the
specifications

13

Random testing
Statistical testing
Interface based

14

