
1

Singleton Pattern

2

What is it?

•  If you need to make sure that there can be one and
only one instance of a class.
–  For example, your system can have only one window

manager or print spooler, or a single point of access to a
database engine.

3

Approach 1

•  Embed a static variable inside the class that we set
on the first instance and check for each time we
enter the constructor.
–  A static variable is one for which there is only one

instance, no matter how many instances there are of the
class.

•  static boolean instance_flag = false;

4

Disadvantage of Approach 1

•  How to find out whether creating an instance was
successful or not
–  Remember constructors do not return values.

•  One way would be to call a method that checks for
the success of creation, and which simply returns
some value derived from the static variable.
–  This is inelegant and prone to error

•  because there is nothing to keep you from creating many instances of
such non-functional classes and forgetting to check for this error
condition.

5

Approach 2

•  Create a class that throws an Exception when it is
instantiated more than once.
–  Let�s create our own exception class for this case

6

Why a New Exception?

•  This new exception type doesn�t do anything in
particular
–  other than calling its parent classes through the super()

method,.

•  However, it is convenient to have our own named
exception type so that the compiler will warn us of
the type of exception we must catch when we
attempt to create an instance

7

Lets Implement the Class

8

Lets Use it!

9

Disadvantage of Approach 2

•  Must enclose every method that may throw an
exception in a try - catch block.

•  And the exception-based solution is not really
�transparent�

10

Approach 3

•  There already is a kind of Singleton class in the standard
Java class libraries: the Math class.
–  This is a class that is declared final and all methods are declared

static, meaning that the class cannot be extended.
–  The purpose of the Math class is to wrap a number of common

mathematical functions such as sin and log in a class-like structure,
since the Java language does not support functions that are not
methods in a class.

•  You can�t create any instance of classes like Math, and
can only call the static methods directly in the existing
final class.

•  You can use the same approach to a Singleton pattern,
making it a final class.

11

Approach 3

12

Disadvantage of Approach 3

•  Difficult to drop the restrictions of Singleton
status
–  a lot of reprogramming to do to make the static

approach allow multiple instances

•  this is easier to do in the exception style class
structure

13

Approach 4

•  Create Singletons using a static method to issue
and keep track of instances.

•  To prevent instantiating the class more than once,
make the constructor private so an instance can
only be created from within the static method of
the class

14

Approach 4

15

Approach 4

•  Don�t have to worry about exception handling if
the singleton already exists-- you simply get a null
return from the Instance method

16

Lets Use it!

17

Compile-time Error Checking

•  should you try to create instances of the iSpooler
class directly, this will fail at compile time
because the constructor has been declared as
private.

18

Approach 5

public class Singleton {
 // Private constructor suppresses generation
 // of a (public) default constructor
 private Singleton() {}

 private static class SingletonHolder {
 private static Singleton instance = new Singleton();
 }

 public static Singleton getInstance() {
 return SingletonHolder.instance;
 }
}

19

Dropping the Singleton Requirement

•  Suddenly, we decide that we can allow �n�
instances of the (previously) Singleton object

•  How would you adapt each of the previous five
approaches?
–  Which implementation is �maintainable�?

