

CMSC 436 Lab 4

Building a Dynamic UI with Fragments
(Advanced)

Overview

● This lab will cover two topics- creating
background Fragments without a UI and
communicating between Fragments and
Activities

● The information you will need for this lab can
be found on the Android developer site at
http://developer.android.com/guide/components/fragments.html

http://developer.android.com/training/basics/fragments/

http://developer.android.com/guide/components/fragments.html
http://developer.android.com/training/basics/fragments/

Overview

● For this lab you will create three Fragments- a
Fragment that displays a Button, a Fragment
that displays a ProgressBar, and an invisible
background Fragment that does some work

Overview

● When the app starts,
the button and
progress bar
fragments are
displayed

● The progress bar
starts as empty

Overview

● Every time the button
is clicked, the
background fragment
performs some work
and the progress bar
increases by 10%

Layout

● In the previous lab you reserved space for the
Fragments with FrameLayout tags in the xml
and dynamically added and removed them
with transactions

● In this lab the Fragments will be a permanent
part of the interface (except the background
worker Fragment), so you should add them to
the main Activity's layout using fragment tags

Layout

● The background worker thread should be
added in a Transaction during the Activity's
onCreate with the syntax add(Fragment,
String)

● The String is a tag that can be used to get a
reference to the Fragment later using
findFragmentByTag

● Before creating the Fragment you should call
findFragmentByTag to see if it has already
been created (this happens for example if
onCreate is called after the device it rotated)

Communication

● To support a modular design, Fragments
should not directly communicate with each
other- instead, they should communicate with
the host Activity, which can then pass
messages to other Fragments

● The Activities and Fragments can have
various callback methods to support this

Communication

● If an Activity is going to receive callbacks from
a Fragment, the Activity should implement an
interface that contains these callbacks

● When the Fragment receives a reference to
the host Activity in onAttach, the Fragment
can verify that the host Activity implements the
required interface by casting the reference to
that interface and catching an exception if the
cast fails- this is demonstrated on the Android
developer site

Communication

● The flow of communication should be
– The work button is clicked, triggering a

callback in the button Fragment

– The button Fragment makes a call to the host
Activity

– The host Activity makes a call to the worker
Fragment to start performing the work

– The worker Fragment finishes the work and
makes a call to the host Activity

– The host Activity makes a call to the progress
bar fragment to update the progress bar

Communication

● Note that if you try to define a callback for the
work Button using the onClick attribute in the
xml tag, Android will look for the callback in
the host Activity, not in the Fragment

● To specify a callback method in the Fragment,
you will need to instead call the Button's
setOnClickListener method during the
Fragment's onActivityCreated callback

● You can get a reference to the Button by using
getActivity().findViewById()

Communication

● A common way to implement callback
listeners is with an anonymous class, such as

workButton.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 //Handle button click
 }

});

Work

● When the work button is clicked, the
background worker Fragment will need to
simulate doing some work

● In this lab you can just have it call
Thread.sleep(1000) to pause for 1 second

● Note that this will cause the UI thread to block-
later we will cover how to use threads to
perform work like this asynchronously

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

