

CMSC 436 Lab 5

Content Providers and Saving Data

Overview

● For this lab you will create an app that saves
the state of a check box and a text box when
the app is destroyed, and restores them when
the app is recreated

● The check box state will be saved as a key-
value pair using a SharedPreferences object,
and the text box contents will be stored in a
file in the device's Internal Storage

Overview

● You will also use a Content Provider to read
the bookmark titles and URLs stored on the
device and write them into the text box

● See the following links for more information
http://developer.android.com/training/basics/data-storage/shared-preferences.html
http://developer.android.com/training/basics/data-storage/files.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html

http://developer.android.com/training/basics/data-storage/shared-preferences.html
http://developer.android.com/training/basics/data-storage/files.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html

Overview

● The app should
initially contain a
check box, a button,
and a large text box
(the EditText widget)

Overview

● The state of the
check box should
persist when the
activity is backed out
of and restarted

Overview

● The user should be
able to enter text in
the text box, which
should also persist
when the app is
backed out of and
restarted

Overview

● Clicking the button
should cause the
bookmark titles and
URLs on the device
to appear in the text
box

Overview

● The user should be
able to edit the
contents of the text
box

● As before, this text
should persist across
restarts

Shared Preferences

● The check box state should be stored during
onPause(), since this is the only callback you
are guaranteed to receive before the app is
destroyed

● The state can be restored in onResume()
● The code for this is very straightforward- see

the Saving Key-Value Sets example in the
Saving Data training on the Android developer
site

Internal Storage

● Each app has its own private Internal Storage
area that is automatically removed when the
app is uninstalled

● The contents of the text box should be written
to a file in the app's Internal Storage during
onPause(), and read back during onResume()

● For information on using Internal Storage see
the Saving Files example in the Saving Data
training on the Android developer site

Internal Storage

● Android can provide the Internal Storage area
directory as a File object or can provide a
FileInputStream or FileOutputStream

● The FileOutputStream can be written to
directly or wrapped in a BufferedOutputStream

● The FileInputStream can be wrapped in an
InputStreamReader which can be wrapped in
a BufferedReader

Internal Storage

● To view files stored in Internal Storage you
can use the DDMS perspective in Eclipse
(open the perspective with the button at the
top right corner)

● Select the device in the left panel, and then
select the File Explorer tab on the right

● The Internal Storage for the app will be
located in, for example,
/data/data/com.example.lab5/files

Content Provider

● When the button is clicked, the titles and
URLs of the bookmarks stored on the device
should be written to the text box

● This information can be read from a Content
Provider

● Information on Content Providers can be
found in Content Provider Basics in the
Content Providers API Guide on the Android
developer site, but these slides should contain
most of the information you need for this part

Content Provider

● First note that to access the bookmark
information you must include the appropriate
uses-permission tag in your
AndroidManifest.xml

<uses-permission
android:name="com.android.browser.permission.READ_HISTORY_BOOKMARKS"/>

Content Provider

● To read the data you will need to call
getContentResolver() and on the result of this
call query() to get a Cursor that will iterate
over the bookmarks

● The URI parameter for the query() specifies
which data table you want to access and
should be Browser.BOOKMARKS_URI

Content Provider

● The projection parameter for the query()
specifies which data columns you want to
retrieve- in this case you want the title and
URL, so you should pass in an array of strings
like

String columns[] = new String[] {
Browser.BookmarkColumns.TITLE,
Browser.BookmarkColumns.URL

};

Content Provider

● The remaining parameters for the query()
specify which rows and what sort order you
want- since you want all rows and the sort
order doesn't matter, these parameters can all
be null

Content Provider

● Once you have the Cursor from the query()
you can call moveToFirst() to begin the
iteration and continue iterating while
moveToNext() returns true

● At each iteration you can read the title and
URL columns of the current row from Cursor c
like

String title = c.getString(c.getColumnIndex(Browser.BookmarkColumns.TITLE));
String url = c.getString(c.getColumnIndex(Browser.BookmarkColumns.URL));

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

