

CMSC 436 Lab 10

App Widgets
and

Supporting Different Devices

Overview

● For this lab you will create an App Widget that
uses a Configuration Activity

● You will also localize the widget to support
different languages and have it display the
current SDK version

● The information needed to do this lab can be
found on the Android developer site at
http://developer.android.com/guide/topics/appwidgets/
http://developer.android.com/training/basics/supporting-devices/languages.html
http://developer.android.com/training/basics/supporting-devices/platforms.html

http://developer.android.com/guide/topics/appwidgets/
http://developer.android.com/training/basics/supporting-devices/languages.html
http://developer.android.com/training/basics/supporting-devices/platforms.html

Interface

● The Lab10 widget
should appear in the
device's list of
widgets

● Long-clicking on the
widget should allow
you to add it to the
home screen

Interface

● When the widget is
placed, the
configuration Activity
should be launched

● You should be able
to enter a title in an
EditText and finish
the Activity by
pushing the “Enter
Title” Button

Interface

● The widget should
have a TextView
showing the title you
entered and another
TextView showing
the current SDK
version integer

Interface

● If the locale is
changed to Spanish
then the text on the
enter button should
be appropriately
adjusted

Interface

● The version text
should also be
adjusted for the
Spanish locale

Lab Name

● To make our grading easier, you should name
the app Lab10-<directory_id>, for example
Lab10-djuba

● You can enter the name when you create the
project in Eclipse, or change it later by editing
the “app_name” string in strings.xml

App Widget

● The Android developer site contains the full
documentation on how to make an App
Widget that uses a Configuration Activity

● In the following slides I will summarize the
basic steps

App Widget

● Create the App Widget Provider class
– You can think of this as the actual widget

– This should extend AppWidgetProvider, which
extends BroadcastReceiver- so, it is not an
Activity

● Create an xml layout for the widget
● Register the App Widget Provider as a

<receiver> in the AndroidManifest.xml
● Create the AppWidgetProviderInfo metadata

xml file in res/xml

App Widget

● Create the Configuration Activity
– Since you don't want to be able to launch this

Activity directly, it should not have the intent
filter with action MAIN and category
LAUNCHER in the manifest that is added by
default- it will instead need an intent filter
with action APPWIDGET_CONFIGURE

● Create an xml layout for the Configuration
Activity

App Widget

● In the AppWidgetProviderInfo you should use
the example settings from the Android
developer site with the following changes

– minWidth and minHeight should both be 36dp

– There should be no previewImage

– widgetCategory should be home_screen

– There should be no initialKeyguardLayout

– File and class names should match what you
use

App Widget

● Since this lab does not include a main Activity,
no Activity will launch when you run the
project in Eclipse- this will instead simply
install the apk on the device

● You will then have to add the widget manually
to the home screen

App Widget

● Because the App Widget Provider is not an
Activity, you cannot inflate the layout xml with
setContentView or look up Views using
findViewById as you normally would (both of
these are methods of the Activity class)

● Instead, you generate a RemoteViews object
containing the layout, which is then sent to the
widget

● To access and modify Views in the
RemoteViews object you can use methods
such as setTextViewText

SDK Version

● It is sometimes necessary to create different
code paths for different versions of the
Android SDK

● You may see an example of this in the
upcoming lab on Network Operations

● You can get an int representing the current
SDK version by calling a static method of the
Build class

Localization

● The res directory can contain different
versions of resources to use in different
situations

– In lab 3 you created different layouts to use in
portrait and landscape orientation in
res/layout and res/layout-land

– In lab 9 you added an icon to res/drawable
which was used for all resolutions- versions
for specific resolutions could have been
included in res/drawable-hdpi, etc.

Localization

● For this lab you will create an alternate set of
strings to use if the locale is set to “es”

● The default set of strings (in English) should
be stored in res/values/strings.xml, while
Spanish strings should be in res/values-
es/strings.xml

● For the text on the Button you should specify
the string to use in the xml layout

● For the version text in the TextView you
should get the correct string programatically

Localization

● I got the Spanish translations from Google
Translate- if you are actually fluent in Spanish,
feel free to use a corrected version

● One way to change the locale is to launch the
Custom Locale app

● You do not need to support the situation
where the locale changes while your widget is
running

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

