
1

Composite Pattern

2

What is it?

•  The Composite pattern allows you to define a class hierarchy of simple
objects and more complex composite objects so that they appear to be
the same to the client program.

•  Because of this simplicity, the client can be that much simpler, since
nodes and leaves are handled in the same way.

•  The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar
programming interface.
–  On the other hand, this has the disadvantage of making your system overly

general.
•  Many times, the composite is essentially a singly-linked tree, in which

any of the objects may themselves be additional composites.
–  Normally, these objects do not remember their parents and only know

their children as an array, hash table or vector. However, it is perfectly
possible for any composite element to remember its parent.

3

An Example Application

•  Consider a small company. It may have started with a
single person who got the business going. He was (of
course) the CEO, although he may have been too busy to
think about it at first.

•  Then he hired a couple of people to handle the marketing
and manufacturing.

•  Soon each of them hired some additional assistants to help
with advertising, shipping and so forth, and they became
the company�s first two vice-presidents.

•  As the company�s success continued, the firm continued to
grow until it has a (somewhat) complex organizational
chart.

4

Salary

•  (If the company is successful) each of these company members receives a salary.
•  We could at any time ask for the cost of any employee to the company.
•  We define the cost as the salary of that person and those of all subordinates. That is,

–  the cost of an individual employee is simply the salary.
–  the cost of an employee who heads a department is the salary plus those of all subordinates.

5

getSalaries()

•  We would like a single interface that will produce
the salary totals correctly whether the employee
has subordinates or not.
–  public float getSalaries();

6

Employee Class

•  Our Employee class stores the name and salary of each employee, and allows
us to fetch them as needed.

7

add() and remove() Employees

•  Note that we created a Vector called subordinates at the time the class was
instantiated. Then, if that employee has subordinates, we can automatically
add them to the Vector with the add method and remove them with the remove
method.

8

Enumeration

•  If you want to get a list of employees of a given
supervisor, you can obtain an Enumeration of them
directly from the subordinates Vector:

•  NOTE: The functionality of this interface is duplicated by
the Iterator interface. In addition, Iterator adds an optional
remove operation, and has shorter method names. You
should consider using Iterator instead of Enumeration.

9

Finally, the getSalaries() method

•  Note that this method starts with the salary of the current
Employee, and then calls the getSalaries() method on each
subordinate. This is, of course, recursive and any
employees which themselves have subordinates will be
included.

10

Building the Tree

11

Building the Tree (2)

