
1

Factory Pattern

2

What is it?

•  returns an instance of one of several possible
classes depending on the data provided to it
–  Usually all of the classes it returns have a common

parent class and common methods, but each of them
performs a task differently and is optimized for
different kinds of data

3

A Closer Look

•  x is a base class and classes xy and xz are derived from it.
•  Factory is a class that decides which of these subclasses to

return depending on the arguments you give it.
•  On the right, we define a getClass method to be one that

passes in some value abc, and that returns some instance of
the class x.

4

More…

•  Which one it returns doesn't matter to the
programmer since they all have �the same�
methods, but different implementations.

•  How it decides which one to return is entirely up
to the factory.
–  It could be some very complex function but it is often

quite simple.

5

An Example

•  an entry form and we want to allow the user to
enter name either
–  as �firstname lastname� or
–  as �lastname, firstname�

•  decide the name order by whether there is a
comma between the last and first name.

6

An Example

7

Lets look at some code
•  start by defining a simple base class that takes a String and splits it

(somehow) into two names:

•  store the split first and last names in the Strings first and last, and,
since the derived classes will need access to these variables, we�ll
make them protected.

8

A Derived Class �FirstFirst�
•  In the FirstFirst class, we assume that everything before

the last space is part of the first name

9

Another Derived Class �LastFirst�

•  LastFirst class, we assume that a comma delimits the last
name.

10

Lets Build the Factory!

•  test for the existence of a comma and then return an
instance of one class or the other

11

Using the Factory

•  initialize an instance of the factory class

•  call the computeName method, which calls the getNamer factory
method and then calls the first and last name methods of the class
instance it returns

12

Fundamental Principle of Factory Patterns

•  Create an abstraction which decides which of
several possible classes to return, and
–  return one.

•  Then you call the methods of that class instance
without ever knowing which derived class you are
actually using.

13

When to Use a Factory Pattern

•  You should consider using a Factory pattern when
–  A class can�t anticipate which kind of class of objects it

must create.
–  A class uses its subclasses to specify which objects it

creates.
–  You want to localize the knowledge of which class gets

created.

