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Factory Pattern 
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What is it? 

•  returns an instance of one of several possible 
classes depending on the data provided to it 
–  Usually all of the classes it returns have a common 

parent class and common methods, but each of them 
performs a task differently and is optimized for 
different kinds of data 
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A Closer Look 

•  x is a base class and classes xy and xz are derived from it. 
•  Factory is a class that decides which of these subclasses to 

return depending on the arguments you give it.  
•  On the right, we define a getClass method to be one that 

passes in some value abc, and that returns some instance of 
the class x. 
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More… 

•  Which one it returns doesn't matter to the 
programmer since they all have �the same� 
methods, but different implementations.  

•  How it decides which one to return is entirely up 
to the factory.  
–  It could be some very complex function but it is often 

quite simple. 
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An Example 

•  an entry form and we want to allow the user to 
enter name either  
–  as �firstname lastname� or  
–  as �lastname, firstname� 

•  decide the name order by whether there is a 
comma between the last and first name. 
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An Example 
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Lets look at some code 
•  start by defining a simple base class that takes a String and splits it 

(somehow) into two names: 

•  store the split first and last names in the Strings first and last, and, 
since the derived classes will need access to these variables, we�ll 
make them protected. 
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A Derived Class �FirstFirst� 
•  In the FirstFirst class, we assume that everything before 

the last space is part of the first name 
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Another Derived Class �LastFirst� 

•  LastFirst class, we assume that a comma delimits the last 
name. 

10 

Lets Build the Factory! 

•  test for the existence of a comma and then return an 
instance of one class or the other 
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Using the Factory 

•  initialize an instance of the factory class 

•  call the computeName method, which calls the getNamer factory 
method and then calls the first and last name methods of the class 
instance it returns 
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Fundamental Principle of Factory Patterns 

•  Create an abstraction which decides which of 
several possible classes to return, and 
–  return one.  

•  Then you call the methods of that class instance 
without ever knowing which derived class you are 
actually using.  
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When to Use a Factory Pattern 

•  You should consider using a Factory pattern when 
–  A class can�t anticipate which kind of class of objects it 

must create. 
–  A class uses its subclasses to specify which objects it 

creates. 
–  You want to localize the knowledge of which class gets 

created. 


