Flyweight Pattern

* We want to draw a small folder
icon with a name under it for
each person in a an :
organization. | |

* We want two types of icons,
one for “is Selected” and one

for “not Selected.” |;I - ' I
* We can have an icon object for T ther o
each person, with its own
coordinates, name and selected
state.
— Each icon can then draw()
itself.
* Lets code it.

E‘égFlyweighl Canvas

Alan Bany Charlie

George ;

Efficiency Issues

« If this is a large organization, there could be a
large number of such icons, but they are actually
all the same graphical image.

Even if we have two icons, one for “is Selected”
and one for “not Selected” the number of different

icons is small.

In such a system, having an icon object for each
person, with its own coordinates, name and
selected state is a waste of resources.

A “better” Approach

Instead, we’ 11 create a
FolderFactory that returns
either the selected or the
unselected folder drawing
class, but does not create
additional instances once
one of each has been
created.

Since this is such a simple
case, we just create them
both at the outset and then
return one or the other.

class FolderFactory
{
Folder unSelected, Selected;
public FolderFactory ()
{
Color brown = new Color{0x53f5flc);
Selected = new Folder{brown);
unSelected = new Folder(Color.yellow);

public Folder getFolder (boolean izSelected)
{
if (isselected)
return Selected;
else
return unSelected;

More Complex Cases

* For cases where more instances could exist, the
factory could keep a table of the ones it had
already created and only create new ones if they
weren’ t already in the table.

Flyweight Pattern

* The unique thing about using Flyweights in this
example is that we pass the coordinates and the
name to be drawn into the folder when we draw it.

» These coordinates are the extrinsic data that allow
us to share the folder objects, and in this case
create only two instances.

— an instance’ s intrinsic data makes the instance unique,
and the extrinsic data is passed in as arguments.

The Folder class

« We' 1l develop a folder class that simply creates a
folder instance with one background color or the
other and has a public Draw method that draws the
folder at the point you specify.

class Folder extends JPanel
{
private Color color;
final int W = 50, H = 30;
public Folder (Color c)
{
color = <;

/===

public void Draw(Graphics g, int tx, int ty, String name)
{
g.setColor (Color.black); //outline
g.drawRect (tx, ty, W, H);
g.drawString (name, tx, ty + H+15); //title
g.setColor (color); //£i11 rectangle

g.fillRect (tx+1l, ty+l, wW-1, H-1);

g.setColor (Color.lightGray); //bend line
g.drawline (tx+1, ty+H-5, Tx+W-1, ty+H-5);

.setColor (Color.black); //shadow lines
.drawline (tx, ty+H+l, tx+W-1, ty+E+l);
.drawLine (tx+W+1l, ty, tx+W+l, ty+H);

QQaQ

.setColor (Color.white); //highlight lines
.drawline (tx+1, ty+1l, tx+W-1, ty+l);
.drawLine (tx+l, ty+l, tx+l, ty+E-1);

QQaQ

The paint() routine

* To use a Flyweight class like this, your main program must
calculate the position of each folder as part of its paint
routine and then pass the coordinates to the folder instance.

 This is actually rather common, since you need a different
layout depending on the window’ s dimensions, and you
would not want to have to keep telling each instance where
its new location is going to be.

* Hence, we compute the position dynamically during the
paint routine.

public void paint (Graphics g)

{

Folder f;
String name;

int j = 0; //count number in row
int row = Top; //start in upper left
int x = Left;

//go through all the names and folders
for (int i = 0; i< names.size(); i++)
{
name = (String)names.elementAt(i);
if (name.equals (selectedName))
f = fact.getFolder (true);
else
f = fact.getFolder (false);
//have that folder draw itself at this spot
f.Draw(g, X, row, name);

®X = X + HSpace; //change to next posn
J++;
if (j >= HCount) //reset for next row
{
j = 0;
row += VSpace;
x = Left;
}

Selecting a Folder

» Since we have two folder instances, that we termed
selected and unselected, we’ d like to be able to select
folders by moving the mouse over them.

* In the paint routine, we simply remember the name of the
folder which was selected and ask the factory to return a
“selected’ folder for it.

« We’ Il now check for mouse motion at the window level
and if the mouse is found to be within a Rectangle, we
make that corresponding name the selected name.

* This allows us to just check each name when we redraw
and create a selected folder instance where it is needed.

11

Checking Mouse Coordinates

public void mouseMoved (MouseEvent)
{
int § = 0; //count number in row
int row = Top; //start in upper left
int x = Left;

//go through all the names and folders
for (int i = 0; i< names.size(); i++)

{
//see if this folder contains the mouse
Rectangle r = new Rectangle(x,row,W,H);
if (r.contains(e.getX(), e.get¥()))

{

selectedName=(String)names.elementAt (i) ;

repaint();
}
X = X + HSpace; //change to next posn
J++;
if (j >= HCount) //reset for next row
{
j=0;

row += VSpace;
x = Left;
} 12

What 1s 1t?

» There are cases in programming where it seems that you need to
generate a very large number of small class instances to represent data.

» Sometimes you can greatly reduce the number of different classes that
you need to instantiate if you can recognize that the instances are
fundamentally the same except for a few parameters.

+ If'you can move those variables outside the class instance and pass
them in as part of a method call, the number of separate instances can
be greatly reduced.

» The Flyweight design pattern provides an approach for handling such
classes.

« It refers to the instance’ s intrinsic data that makes the instance unique,
and the extrinsic data which is passed in as arguments.

» The Flyweight is appropriate for small, fine-grained classes like
individual characters or icons on the screen.

