
1

Flyweight Pattern

2

Example

•  We want to draw a small folder
icon with a name under it for
each person in a an
organization.

•  We want two types of icons,
one for �is Selected� and one
for �not Selected.�

•  We can have an icon object for
each person, with its own
coordinates, name and selected
state.
–  Each icon can then draw()

itself.
•  Lets code it.

3

Efficiency Issues

•  If this is a large organization, there could be a
large number of such icons, but they are actually
all the same graphical image.

•  Even if we have two icons, one for �is Selected�
and one for �not Selected� the number of different
icons is small.

•  In such a system, having an icon object for each
person, with its own coordinates, name and
selected state is a waste of resources.

4

A �better� Approach

•  Instead, we�ll create a
FolderFactory that returns
either the selected or the
unselected folder drawing
class, but does not create
additional instances once
one of each has been
created.

•  Since this is such a simple
case, we just create them
both at the outset and then
return one or the other.

5

More Complex Cases

•  For cases where more instances could exist, the
factory could keep a table of the ones it had
already created and only create new ones if they
weren�t already in the table.

6

Flyweight Pattern

•  The unique thing about using Flyweights in this
example is that we pass the coordinates and the
name to be drawn into the folder when we draw it.

•  These coordinates are the extrinsic data that allow
us to share the folder objects, and in this case
create only two instances.
–  an instance�s intrinsic data makes the instance unique,

and the extrinsic data is passed in as arguments.

7

The Folder class

•  We�ll develop a folder class that simply creates a
folder instance with one background color or the
other and has a public Draw method that draws the
folder at the point you specify.

8

9

The paint() routine

•  To use a Flyweight class like this, your main program must
calculate the position of each folder as part of its paint
routine and then pass the coordinates to the folder instance.

•  This is actually rather common, since you need a different
layout depending on the window�s dimensions, and you
would not want to have to keep telling each instance where
its new location is going to be.

•  Hence, we compute the position dynamically during the
paint routine.

10

11

Selecting a Folder

•  Since we have two folder instances, that we termed
selected and unselected, we�d like to be able to select
folders by moving the mouse over them.

•  In the paint routine, we simply remember the name of the
folder which was selected and ask the factory to return a
�selected� folder for it.

•  We�ll now check for mouse motion at the window level
and if the mouse is found to be within a Rectangle, we
make that corresponding name the selected name.

•  This allows us to just check each name when we redraw
and create a selected folder instance where it is needed.

12

Checking Mouse Coordinates

13

What is it?

•  There are cases in programming where it seems that you need to
generate a very large number of small class instances to represent data.

•  Sometimes you can greatly reduce the number of different classes that
you need to instantiate if you can recognize that the instances are
fundamentally the same except for a few parameters.

•  If you can move those variables outside the class instance and pass
them in as part of a method call, the number of separate instances can
be greatly reduced.

•  The Flyweight design pattern provides an approach for handling such
classes.

•  It refers to the instance�s intrinsic data that makes the instance unique,
and the extrinsic data which is passed in as arguments.

•  The Flyweight is appropriate for small, fine-grained classes like
individual characters or icons on the screen.

