Observer Pattern

What is it? And an Example

* The observer pattern (sometimes known as publish/
subscribe) is a design pattern used to observe the state of
an object.

» For example, we often like to display data in more than
one form at the same time and have all of the displays
reflect any changes in that data.

— For example, you might represent stock price changes both as a
graph and as a table or list box.

— Each time the price changes, we’ d expect both representations to
change at once without any action on our part.

— In Java we can easily make use of the Observer Design Pattern to
cause our program to behave in this way.

“The Observer Pattern Assumption”

* The Observer pattern

assumes that the object Graphic List
containing the data is Display Display
separate from the objects T

that display the data, and
that these display objects
observe changes in that 5

data.
User

Data

The Observer Philosophy

* We usually refer to the data as the Subject and
each of the displays as Observers.

* Each of these observers registers its interest in the
data by calling a public method in the Subject.

* Then, cach observer has a known interface that the
subject calls when the data change.

Observer and Subject Interfaces

* Lets define some abstract interfaces. They will allow us to
write any sort of class objects we want as long as they
implement these interfaces, and that we can declare these
objects to be of type Subject and Observer no matter what

else they do.

abstract interface Observer {

//notify the Observers that a change has taken place
public void sendNotify(String =) ;

}
/==

abstract interface Subject {

e e Subject you are interested in changes
//tell the Subject t ted h
puklic void registerInterest (Observer obs);

}

An Example

* The user-controlled radio-
button choice changes the
display in two windows:

— First, changes the

background color and the
text string in the first panel.
— Second, adds the name of

the new color to the list
box.

| Egil_.'t:t.. = | O] X]

Lets Create the Main Window!

* This main window is the Subject or data repository object.

public class Watch2l extends JFrame
implemsnts ActionListener, TtemListensr, Subject |
Button Closes;
JRadiocButton red, gresn, blus;
Vector ocbservers;

public WatchZL () {
super ("Change 2 other frames");
//1list of observing frames

obhservers = new Vector();
//add panel to content pans
JPanel p = new JPanel (true);

p.setLayout (new BorderLayout());
getContentPane () .add("Center", p);

//vertical box layout
Box box = new Box (BoxLayout.¥ AXIS); 7

More Main Window Code

p.add ("Center", box);

//add 3 radio buttons
box.add({red = new JRadicButton ("Red"));
box.add (green = new JRadioButton ("Green"));
box.add(klus = new JRadicButton ("Blus"));

//listen for clicks on radic buttons
blue.addItemListener (this);
red.addItemListener (this);
green.addItemListener (this);

//make all part of same button group
ButtonGroup bgr = new ButtonGroupl();
bgr.add(red);
bgr.add (green);
bgr.add(blue);

Wait, there’ s more!

* Our main frame class implements the Subject
interface.

* That means that it must provide a public method
for registering interest in the data in this class.

* This method is the registerinterest method, which
just adds Observer objects to a Vector.

public void registerInterest (Chserver obs) {
//adds chserver toc list in Vector
ohservers.addElement (ocbhs) ;

The Observers

* We create two observers, once which displays the
color (and its name) and another which adds the
current color to a list box.

ColorFrame cframs = new ColorFrame (this);
LiztFrame lframs = new ListFrams (this);

Lets Create One of the Frames

* When creating the ColorFrame window, we register our
interest in the data in the main program.

class ColorFrame extends Jframe
implemsents Chserver
Color color;
sString color name="black";
JPanel p = new JPanel (true);

e
public ColorFrame (Subject s) {
super ("Colors"™); //set frame capticn
getContentPane () .add("Center", el
s.registerInterest(this); //register with Subject
setBounds (100, 100, 100, 100);
setVisible (true) ;
}
11
[
public void sendNotify(String s) {
//Observer is notifisd of change here
color name = 3; //save color name
/{32t background to that color
if{s.toUppercass () .aguals ("RED"))
color = Color.red;
if(s.toUpperCase().equals ("BLUE"))
color =Color.blus;
if(s.toUpperCass () .equals ("GREEN"))
color = Color.green;
setBackground (color) ;
}
J

public void paint (Graphics g) {
g.drawstring(color name, 20, 50);
}

Invoking sendNotify()

» Every time someone clicks on one of the radio buttons, the main
program calls the sendNotify method of each Observer who has
registered interest in these changes by simply running through the
objects in the observers Vector.

public void itemStateChangsed (ItemEvent) {
//responds to radioc button clicks
//1if the button is seslectad
if(e.getstateChange () == ItemEvent.SELECTED)
notifyObservers ((JRadioButton)e.getSource());

private void notifyChbszservers (JRadiocButton rad) {
//sends text of selescted button to all ocbservers
String color = rad.getText();
for (int 1=0; 1< ocbservers.size(); 1++) {

{ (Observer) (cbhservers.elementht (1))) .sendNotify (color);
1 13

}

sendNotify() Explained

 In the case of the ColorFrame observer, the
sendNotify method changes the background color
and the text string in the frame panel.

* In the case of the ListFrame observer, however, it
just adds the name of the new color to the list box.

Notification Type

* In this carefully constructed example, the notification
message is the string representing the color itself.

* When we click on one of the radio buttons, we can get the
caption for that button and send it to the observers.

» This, of course, assumes that all the observers can handle
that string representation.

* In more realistic situations, this might not always be the
case, especially if the observers could also be used to
observe other data objects.

* In more complicated systems, we might have observers
that demand specific, but different, kinds of data.

Notification Type (contd...)

* Rather than have each observer convert the message to the
right data type, we could use an intermediate Adapter class
to perform this conversion.

* Another problem observers may have to deal with is the
case where the data of the central subject class can change
in several ways.

* We could delete points from a list of data, edit their values,
or change the scale of the data we are viewing.

 In these cases we either need to send different change
messages to the observers or send a single message and
then have the observer ask which sort of change has
occurred.

