
1 

Observer Pattern 

2 

What is it? And an Example 

•  The observer pattern (sometimes known as publish/
subscribe) is a design pattern used to observe the state of 
an object.  

•  For example, we often like to display data in more than 
one form at the same time and have all of the displays 
reflect any changes in that data.  
–  For example, you might represent stock price changes both as a 

graph and as a table or list box.  
–  Each time the price changes, we�d expect both representations to 

change at once without any action on our part. 
–  In Java we can easily make use of the Observer Design Pattern to 

cause our program to behave in this way. 



3 

�The Observer Pattern Assumption� 

•  The Observer pattern 
assumes that the object 
containing the data is 
separate from the objects 
that display the data, and 
that these display objects 
observe changes in that 
data. 

4 

The Observer Philosophy 

•  We usually refer to the data as the Subject and 
each of the displays as Observers.  

•  Each of these observers registers its interest in the 
data by calling a public method in the Subject.  

•  Then, each observer has a known interface that the 
subject calls when the data change. 



5 

Observer and Subject Interfaces 

•  Lets define some abstract interfaces. They will allow us to 
write any sort of class objects we want as long as they 
implement these interfaces, and that we can declare these 
objects to be of type Subject and Observer no matter what 
else they do. 

6 

An Example 

•  The user-controlled radio-
button choice changes the 
display in two windows: 
–  First, changes the 

background color and the 
text string in the first panel.  

–  Second, adds the name of 
the new color to the list 
box. 



7 

Lets Create the Main Window! 

•  This main window is the Subject or data repository object. 

8 

More Main Window Code 



9 

Wait, there�s more! 

•  Our main frame class implements the Subject 
interface.  

•  That means that it must provide a public method 
for registering interest in the data in this class.  

•  This method is the registerInterest method, which 
just adds Observer objects to a Vector. 

10 

The Observers 

•  We create two observers, once which displays the 
color (and its name) and another which adds the 
current color to a list box. 



11 

Lets Create One of the Frames 

•  When creating the ColorFrame window, we register our 
interest in the data in the main program. 

12 



13 

Invoking sendNotify() 
•  Every time someone clicks on one of the radio buttons, the main 

program calls the sendNotify method of each Observer who has 
registered interest in these changes by simply running through the 
objects in the observers Vector. 

14 

sendNotify() Explained 

•  In the case of the ColorFrame observer, the 
sendNotify method changes the background color 
and the text string in the frame panel.  

•  In the case of the ListFrame observer, however, it 
just adds the name of the new color to the list box. 



15 

Notification Type 

•  In this carefully constructed example, the notification 
message is the string representing the color itself.  

•  When we click on one of the radio buttons, we can get the 
caption for that button and send it to the observers.  

•  This, of course, assumes that all the observers can handle 
that string representation. 

•  In more realistic situations, this might not always be the 
case, especially if the observers could also be used to 
observe other data objects.  

•  In more complicated systems, we might have observers 
that demand specific, but different, kinds of data.  

16 

Notification Type (contd…) 

•  Rather than have each observer convert the message to the 
right data type, we could use an intermediate Adapter class 
to perform this conversion. 

•  Another problem observers may have to deal with is the 
case where the data of the central subject class can change 
in several ways.  

•  We could delete points from a list of data, edit their values, 
or change the scale of the data we are viewing.  

•  In these cases we either need to send different change 
messages to the observers or send a single message and 
then have the observer ask which sort of change has 
occurred. 


