
1

Template Pattern

2

What is it?

•  Whenever you write a parent class where you leave one or
more of the methods to be implemented by derived classes,
you are in essence using the Template pattern.

•  The Template pattern formalizes the idea of defining an
algorithm in a class, but leaving some of the details to be
implemented in subclasses.

•  In other words, if your base class is an abstract class, as
often happens in these design patterns, you are using a
simple form of the Template pattern.

3

What is it?

•  The idea behind the Template pattern is that some
parts of an algorithm are well defined and can be
implemented in the base class, while other parts
may have several implementations and are best
left to derived classes.

•  Another main theme is recognizing that there are
some basic parts of a class that can be factored out
and put in a base class so that they do not need to
be repeated in several subclasses.

4

Types of Methods in a Template

•  A Template has four kinds of methods that you can make use of in
derive classes:
1.  Complete methods that carry out some basic function that all the

subclasses will want to use. These are called Concrete methods.
2.  Methods that are not filled in at all and must be implemented in derived

classes. In Java , you would declare these as abstract methods.
3.  Methods that contain a default implementation of some operations, but

which may be overridden in derived classes. These are called Hook
methods. Of course, in Java you can override any public or protected
method in the derived class, but Hook methods are intended to be
overridden, while Concrete methods are not.

4.  Finally, a Template class may contain methods which themselves call
any combination of abstract, hook and concrete methods. These methods
are not intended to be overridden, but describe an algorithm without
actually implementing its details. They are called Template methods.

