Testing is an Event-Centric Activity

Fevzi Belli, Mutlu Beyazit

Faculty of Computer Science, Electrical Engineering
and Mathematics
University of Paderborn
Paderborn, Germany
{belli, beyazit} @adt.upb.de

Abstract—Recent advances in techniques for testing graphical
user interfaces (GUIs) enabled to develop workflow models
and successfully employ them to generate large numbers of test
cases by defining new test adequacy criteria and optimizing
test suites for increasing the test efficiency. The key to the
success of these event-focused techniques, especially event
flow graphs and event sequence graphs, is that they primarily
focus on the input space, and model the workflow in simple
terms. If necessary, they can also be augmented to model more
complex systems and processes to adapt to the needs of test
engineers. We now posit that we can extend these techniques to
also domains other than GUISs to create a general event-driven
paradigm for testing.

Keywords-modeling; testing; event; state; event-centrics
directed graph

I. INTRODUCTION - WHY EVENT ORIENTATION?

Systematic testing is an engineering activity that requires
the test process possess following key features [1][2].

* Predictability is the ability to obtain known the
characteristics of a behavior in response to given input:
Construct a set of test cases which consist of ordered
pairs of inputs and, based on the defined oracle(s),
derive the expected reaction or behavior (e.g., outputs,
successful completion of test sequence execution, etc.)
of the system under test (SUT) using the model or
specification for covering the given operational profile.

. Controllability is the ability to establish a specific
behavior in a system by using the inputs: Apply the
generated test cases to exercise the SUT in order to
produce a specific behavior.

* Observability is the ability to determine the
characteristics of a behavior in a system by controlling
the inputs and observing its outputs: Based on the
executed events, check the behavior of the SUT to
come to an unambiguous decision whether the test has
succeeded or failed.

The sum of predictability, controllability, and
observability of the test process leads to its monitoring
capability that helps with measuring the grade of festability
of the SUT. Monitoring requires a modular and loosely
coupled structure of the SUT, which must be designed

Atif Memon

Department of Computer Science
University of Maryland
College Park, MD 20742, USA
atif@cs.umd.edu

carefully, considering the appropriate engineering methods
and principles, e.g., “Design for Testability” [3].

Events are essential for fulfilling monitoring
requirements, and thus enabling systematic testing.
They are externally perceptible, contrary to “states”,
which are internal to the SUT, and thus not necessarily
observable., Also, events that belong to the input space
enable controllability of the test process, because they are
used to induce specific behaviors. Furthermore, event-based
approaches support the predictability of the test process,
since the expected behavior can be derived.

In the context of this paper, we use the term event to
mean a discrete action, message, signal, etc. that may cause
a change to the state of an underlying system. We feel that
this is important for us to clarify as the term event is used
differently across different fields.

The simplicity and efficiency of event-based testing
approaches are exploited in various works, e.g., as using
event-flow graphs (EFGs) and their derivates for GUI
testing [4][2], and in a broader sense, event sequence graphs
(ESGs) [5][3]. Both approaches (and their derivatives) serve
as event-oriented, formal abstractions for test specification
and implementation languages such as OASIS [6][4] and
TTCN [7], enabling the use of mathematical methods.
Although, such works demonstrate the success and explain
the significance of event-based approach for testing, the
suggested event-based models tend to find limited attention
caused by various aspects and thus need extension to widen
their usage and reach a broader acceptance than solely in
GUI testing.

In model-based testing, most of the recognized research
work is based on state-based models, such as UML state
diagrams [8] and other graphical models, e.g., [9][6][10][7]
[T1][8][12][9][13][10]. Precisely observed, however, such
models operate on “outputs” that are externally perceptible
and considered as semantic augmentation of the arcs that
connect states. Thus, in the end these outputs represent
events. “States” cannot be observed and controlled directly
from outside of the SUT, as they are controlled indirectly
via event sequences. Therefore, state-based models function
not due to their state orientation, but thanks to their
proximity to event orientation.

At this point, one can argue to use state-based models

and perform model-to-model transformations to obtain
an event-based model. However, in model-based testing
practice, one tends to make different simplifications based
on the selected representation and limitations. Various
factors, like individual preferences, time/budget constraints
and system characteristics, also affect these simplifications.
Thus, in practice, an event-based model obtained using
model-to-model transformations is expected to be different
from another one built completely using event-centric
approach. Therefore, in many cases, the different focuses
of the representations are rather more important than their
equivalence.

This paper lays out a general scheme of event-based
testing, in terms of test sequences, the process of generating
those test sequences, etc. (Section II). It also explains that
the existing approaches for testing of GUIs [4][2][5][3]
are successful primarily due to their event-driven approach
to testing and devise a basic event-based model that has
the potential to create abstractions to model various other
domains by performing proper extensions (Section III). In
addition, examples are outlined in order to demonstrate the
use of the discussed extensions and their characteristics
(Section 1V). The paper concludes with a list of aspects
and ideas to speculate for further re-casting event-based
modeling (Section V).

II. EVENT-BASED MODELING

Basically, an event is an externally observable
phenomenon, such as an environmental stimulus or a
system response, punctuating different stages of the system
activity. It is clear that such a representation disregards
the detailed internal behavior of the system and, hence, is
enables the creation of relatively more abstract and simpler
representations compared to, e.g., state transition diagrams
(STDs), or finite-state automata (FSA). A simple example
of such abstractions is event sequence graphs (ESGs).

(b) An equivalent FSA.

Figure 1. Relationship between ESGs and FSA.

Briefly speaking, an ESG is a digraph and may be

thought of as an ordered pair

M= (a E), (1
where « is a set of nodes uniquely labeled by some input
symbols (also denoted here by @) and E a non-empty
relation on ¢, with elements in E representing directed arcs
between the nodes in ¢.

Figure 1 shows an ESG and a related FSA. Obviously,
this implies that, given a need, the relevant FSA can be
recovered from the ESG or, more accurately, the ESG can
be refined into an equivalent FSA in an appropriate manner.
These conversions are done by interpreting ESGs as Moore-
like machines [14][11], and FSAs as Mealy-like machines
[15][12]. However, the case of empty string, and the initial
and final states should be treated carefully. Furthermore,
one may need to use indexing [5][3] to assign a unique label
to each event in the graph.

ESGs are also comparable to Myhill graphs [16][13]
, which are used as computation schemes [17][14], or as
syntax diagrams, e.g., as used in [18][15][19][16] to define
the syntax of Pascal; see also the early usage of the notion
event sequences [20][17]. The difference between Myhill
graphs and ESGs is that the symbols, which label the nodes
of an ESG, are interpreted here not merely as symbols and
meta-symbols of a language, but as operations put together
in an event set.

Event flow graphs (EFGs) are another example of
commonly used event-based abstractions. They are
primarily designed for GUI modeling and testing. Therefore,
they are enriched by semantics specific to GUIs. Every EFG
can be transformed to an equivalent ESG by taking away
the additional semantics that is used to differentiate the GUI
events, and any ESG can be transferred to an equivalent
EFG by inclusion of the required semantics. [4][5]

In the rest, we base our discussion on ESGs, because, for
event-based modeling, they are the “most Spartan” (in the
sense they need the lowest amount of modeling means and
resources). Nevertheless, they possess a sufficient amount
of semantics so that they can be used not only for modeling
specific types of systems, like GUIs, but also other pro-
active, re-active or inter-active systems. Usually, they
will be augmented using proper semantics and additional
features to enable modeling of real-life systems. Section
I (Extensions) will explain and demonstrate how such
augmentations can be carried out.

A. Testing Different Behaviors

As implied by Definition (1), ESGs are simply directed
graphs where nodes are interpreted as events, and arcs form
a “follows relation” and thus represent event-sequences
(more precisely event-pairs or 2-sequences). For keeping
the view as simple as possible, there is no distinction
between different types of events. One is only interested in
events and their sequences.

In testing practice, it is very common to impose
additional constraints on ESGs. These constraints generally

ease the processing of the event-based model and increase
or ensure the usefulness. Some examples of such constraints
are given below.

* The set of start and finish events in an ESG are non-
empty.

* Each event in an ESG is reachable from at least one
start event, and at least one finish event is reachable
from each event.

An ESG model of a system defines a set of behaviors
to which the system should conform based on the events.
Thus, it is possible to test for positive, i.e., desirable, valid
or expected, and negative, i.e., undesirable, invalid or faulty,
behaviors [5][3], which are briefly defined as follows.

* Positive Testing: Testing whether the system is doing
what it is supposed to do.

* Negative Testing: Testing whether the system is not
doing what it is not supposed to do.

Positive testing is performed by generating and using
event sequences that induce a desirable behavior specified
by the ESG as test cases. A positive test case succeeds
if the observed behavior matches the expected behavior.
Otherwise, it fails.

An example of such a test case is a complete event
sequence (CES) that realizes a walk through the system, i.e.,
a CES is a sequence of events which starts at a start event
and ends at a finish event.

Some examples of CESs generated from the ESG model
in Figure 1 are [¢], [¢x c] and [x ¢ x pl]. Note that
events / and] are pseudo start and finish events which are
used to mark the real start and finish events in the model.

Negative testing intends to exercise an undesirable
behavior and confirm that the system does not display such
a behavior. To do this, depending on negative behaviors to
be tested, one can create a single faulty model containing
undesirable behaviors (or use multiple faulty models). A
negative test case fails if the observed behavior does not
match the behavior derived from the original model.

A faulty complete event sequence (FCES) can be given
as an example for a negative test case. The last two events
in a FCES are called a faulty event pair (FEP). An FEP
specifies an undesirable sequence of events that is not
included in the ESG model of the system. The initial part of
a FCES consists of a valid sequence of events that are used
to reach the FEP and exercise it.

Some examples of FCESs generated from the ESG in
Figure 1 are [xp2c], [cxp2x],and [x c pl x p2 p2]
. Final event pairs in FCES, i.e., (p2 ¢), (p2 x) and (p2 p2),
are FEPs that are not included in the ESG model.

B. ESG Modeling Enable Test Suite Optimization

CESs and FCESs form test sequences (test cases) that
can be put together to form test suites. Meaningful adequacy
criteria can be defined for coverage of test sequences of
different length. Well-studied algorithms from graph theory
help to solve optimization problems encountered.

For a thorough positive testing of ESGs, k-sequence
coverage criterion (k=I) can be used. This criterion entails
the coverage of event sequences of fixed length k. To do
this, one can transform the underlying graph to construct all

desirable event sequences to be covered, CESs of minimal
total length and/or minimal number can be generated. This
problem is a derivation of the Chinese Postman Problem
(CPP) that attempts to find the shortest path or cycle in a
graph by visiting each arc [21][18].

To test for negative behavior, FEP coverage criterion
can be used. The FEPs are inserted into the ESG and then
shortest paths are computed in order to generate FCESs
covering the FEPs. The number of FCESs for negative
testing increases with increasing number of vertices since |
FCES| = |V|? - |E|.

C. Events Help Reach a High Grade of Testability

In the light of the notions introduced in the previous
sections, it can be seen that using simple structure of
ESGs is sufficient to employ robust testing strategies
that use graph-based test generation algorithms that are
mathematically sound and efficient. Furthermore, such
a simplistic approach is necessary, because it keeps the
analyzability at a manageable level and the overall testing
process practical.

Thus, ESG modeling enables the test process to fulfill
the requirements of monitoring capability as introduced at
the beginning of Section I [5].

* Predictability: Construct the set of test cases that
includes all types of interaction sequences, i.e., positive
test cases like CESs and negative test cases like FCESs,
to exercise desirable or undesirable behavior, and to
produce the desired system responses and error/warning
messages, respectively.

* Controllability: Input positive and negative test
cases to transfer the system into a legal or illegal state,
respectively.

* Observability: By defining proper test oracles
(based on completion of test sequence execution or
observed outputs), CESs and FCESs can effectively
be observed to check the system behavior to enable a
decision whether an expected, desirable system response
is produced, or a faulty, undesirable event arises. In
the latter case, a response like an error message or
warning is invoked, provided that an exception handling
mechanism exists.

III. EXTENSIONS

We posit that much of our work on GUI testing can
be extended to other event-driven software. This section
classifies different types of ESG extensions based on the
syntax of the nodes included in the graphs.

In the context of our classification, one-sorted
extensions use a single, uniform syntax for the nodes, that
is, deploy only one kind of nodes (represented by circles).
Many-sorted extensions include nodes of different types,
using additional syntax for representing different meanings,
i.e., for enriching the semantics of the basic ESG.

A. One-Sorted Extensions

Over the years, needs for various systematic facilities
have arisen to increase the expressive power of the models
used in system/software engineering. The new facilities

have sometimes come as extensions to the existing
models (e.g., similar to derivation of timed automata
from finite state automata), but in general, completely
new representations have been introduced to meet these
spontaneous needs (e.g., process algebra, or UML).

Thus, it is possible to extend ESGs in different ways
by considering the aforementioned formal representations
introduced over the years, while striving to keep the
advantages of the one-sorted event-based representation,
e.g., usage of sound mathematical methods, mostly based
on the results of the graph theory, formal languages,
and automata theory, for model analysis and test suite
optimization.

Basic ESGs
Structured ESGs
Input-Output ESGs
Communicating ESGs
Quiescent ESGs
Timed ESGs
Pushdown ESGs

Figure 2. Eytensions of ESGs.

In the following, the basic ESG notion is semi-formally
extended with different traits to be used in different domains
following Figure 2. Only the structured ESGs have actively
been employed in the practice. Pushdown ESGs have been
derived from pushdown automata (as ESGs were derived
from finite state automata), and the rest of the extensions
were discussed in [22] but have not been published before.

Note that one can combine the traits in Figure 2 to derive
and use ESG models such as “structured timed 10 ESGs”.
Therefore, Figure 2 is supposed to only highlight the
traits not all the possible combinations. Even if this figure
suggests a semantic hierarchy, we note that more theoretic
work is necessary to formally reason the existence of such a
hierarchy.

1) Structured ESGs

OnO= 00,
O=ONONeEe

Figure 3. gyryctured ESG.

Structured ESG enables further refinement of the nodes
in an ESG so that a node can represent a composite behavior
that requires presence of multiple events, i.e., the node
is a composite event. For example, in Figure 3, the node
following event “a” represents another (sub) ESG.

Naturally, it is possible to make other types of
structuring as long as the elements of the structured node
are compatible with the notion of event. An example of such
structuring is the integration of decision tables [23][20].

2) Input-Output ESGs (10 ESGs)

O OpaOnO)

Figure 4. pputoutput ESG.

The basic ESGs do not differ between different types of
events, i.e., user inputs and system outputs are represented
by the same kind of nodes. In case the domain needs a
differentiation between inputs and outputs, one can augment
the semantics nodes by additional symbols, e.g., by “!” for
inputs and “?” for outputs, leading to input-output ESGs
(Figure 4).

3) Communicating ESGs

(OB
(D@0

Figure 5. Communicating 10 ESG.

The next level leads to communicating 10 ESG that
combines [0 ESG with sender-receiver structure. This is
important for representation of synchronization of parallel
behavioral ESG models. In Figure 5, the dashed arcs
represent the communications.

4) Quiescent ESGs

Quiescent [10-ESG includes the event & for
representation of no actions or outputs of the system.
Quiescence is important for continuation of the user actions
after determining that there is no output from the system. An
example is given in Figure 6.

O OO O=ONOLD)

Figure 6. (yyjescent 10 ESG.

5) Timed ESGs

O OROR OO
(O @2m-Co~(D

Figure 7. Timed 10 ESG.

The timed ESGs are used to define an event-based model
with respect to time, i.e., a timed behavior is defined, so that
execution of an event is also dependent on time. Time is
quantified using 0 as the tick for time period, and intervals
for time limits.

6) Pushdown ESGs

(D> GipaD>Coira6 w0e0—>(1)

Figure 8. pyshdown ESG.

In pushdown ESGs, the ESG model comes with
a stack component. A sequence of stack operations is
performed when an event is executed. The execution of

the event is successful if and only if the related sequence
of stack operations is also successful. Here, for the sake
of simplicity, we assume that there are only three stack
operations available:

* push — p(x): Writes symbol x to the top of the
stack. This operation is always successful.

* pop — q() or g(x): Reads and deletes the peek
element x from the stack. g() fails if the stack is
empty, and q(x) fails if the stack is empty or the
peek element is not x.

* peek —r() or r(x): Reads the peck element from the
stack.. r() fails if the stack is empty, and r(x) fails if
the stack is empty or the peek element is not x.

This is the very beginning, the first step to define a new
set of models that are uniform in the sense that they (i) are
event-centric, and (ii) consist of one-sorted nodes — instead
of a broad variety of symbols that are time-consuming to
learn, and open for confusions, and finally (iii) enable usage
of sound mathematical techniques, e.g., resulting from
graph theory, to form algorithms and perform optimizations,
subject to various resources, efficiently.

B. Many-Sorted Extensions

Many sorted extensions to ESG models employs set of
traits which are quite different from the ones introduced
in Figure 2 (Section IV.A). Generally, these traits are very
application-specific.

The best examples of many-sorted extensions of ESGs
are EFGs, where the nodes have different syntax and
semantics for modeling of GUIs. For example, in the EFG
in Figure 9, the diamond-node is a menu-open event, the
double-circle-node is a restricted-focus event, rectangle-
nodes are termination events and circle-nodes are system-
interaction events.

Figure 9. Ap example EFG.

For more sophisticated event-centric modeling, several
variations of EFGs have been created in recent work: (1)
Event Interaction Graphs (EIGs) [24][21] that represent a
subset of events in the system, and hence, are more compact
and scalable, (2) Event Semantic Interaction Graphs
(ESIGs) [25][22] that model a subset of “follows” relations
— between events that have shown to interact at a semantic
level, and (3) Probabilistic EFGs (PEFGs) [26][23] that
form Bayesian networks and n-gram Markov models.

1V. EXAMPLES

In this section, we provide some examples on how
the discussed extensions to ESGs can be used. For the

sake of simplicity and clarity, we consider a simple online
conference initiation example.

In the example, there is a user entity which would
like to participate in a specific online conference. Each
user logs in the system, makes a join request and waits
for the acceptance. After the acceptance is received, the
user becomes a participant in the conference. Of course, a
request can also be declined during initiation. In this case
the user is allowed make another request.

There is also an administrator entity which accepts or
declines the participation requests and determines which
users are allowed to take part in the conference.

Legend:
-0 Openlogin interface
-u: Enter userid

-p: Enter password

-5 Perform sign in

Figure 10. Basic ESG for Login interface.

As already mentioned in Section I, during modeling, the
abstraction level is quite important and allows the tester to
create different models to test for different purposes. For
example, one can create and use (basic) ESG in Figure 10 to
model the events and their sequences in user login scenario.

During login process, a user enters user id and
password pair in any order. The sign in is activated,
if only both user id and password are entered.
Furthermore, after sign in is executed, it can either succeed
or fail. In case of failure, if password is wrong then user
only needs to enter a new password. However, if user
id is wrong both user id and password need to be entered
again.

In Figure 10, event “o” opens the login interface,
where events “u” and “p” are for entering the user id and
password, respectively. Also, event “s” corresponds to
sign in event. Note that multiple instances of “u” and “p”
events are used to leave out infeasible event sequences. For
example, “ul” cannot be followed by “s”, where as “u2”
can be. Furthermore, these events are indexed (or renamed)
to prevent confusion and assure uniqueness.

Now we will use this example to demonstrate some one-
sorted and many-sorted ESG extensions.

A. One-Sorted Extension Examples
Here, we give examples for one-sorted extensions
introduced in Section III.A using the ESG in Figure 10.

1) Structured ESG using Decision Table: Note that the
ESG in Figure 10 take the order of entering “u” and “p”
events into account while modeling. However, if there
are too many of such events in a system, the number of
orderings grows very fast. Therefore, one may choose to

ignore the order that the data is entered. In such cases,

decision tables can be used to structure and simplify the
ESG. Figure 11 demonstrates such an ESG for the ESG in
Figure 10.

In Figure 11, “up” represents the event for entering
user id and password. The decision table suggests that
event “s” follows event “up” if and only if both event “u”

and event “p” are performed.

OrO——o 20—

uisentered|f t ft Legend:
pisentered|f ftt -0: Open login interface

-up: Enter userid and password
R | . _ x | -siPerformsignin

Figure 11. gyrictured ESG for Login interface.

2) Input-Output ESG: 1t is clear that the ESG in Figure 10
contains no information on system outputs, i.e., it indexes
an event based on the set of system events that can follow
it. Therefore, it can only be used to generate test sequences
and in combination with non-output based test oracles, e.g.,
sequence-based or language-based test oracles.

When outputs are also included, the existing nodes may
grow and further indexing may become necessary. Figure 12
demonstrates the IO ESG for login interface.

Legend:

-?0: Open login interface

-7u: Enter userid

-?p: Enter password

-Ii.....): Login page with different characterizations
-?5: Perform sign in

-lj(i): Initial join page

Figure 12. 10 ESG for Login interface.
In Figure 12, “?” are used to label input events and “!
” are used to label output events. Most of the output events
are of the form “!1 (U.P.,U,P,)”. Here, “1” signifies
login interface, “U” signifies user id and “P” signifies
password. Also, “U.P.” signifies whether user id and
password are entered or not. It can take the values of
00, 01, 10 and 11 (e.g., U.P.=00 means that both user
id and password are empty, whereas U.P.=11 shows
that they are entered). Furthermore, “U,P,” can only take
the values of 00, 10, 01, and shows if there is a warning
message on user 1id or password, or not (e.g., if
U,P,=10, there is a warning message on user id, and

if U,P,=01, an incorrect password is used). There is also a
single output called “!7j (i) ” which signifies that the login
is successful and initial join interface is displayed.

Legend:

-0: Open login interface
-u: Enter userid

-p: Enter password

-s: Perform sign in

Figure 13. Apother basic ESG for Login interface.

Figure 12 demonstrates that explicit inclusion of
outputs tends to increase the complexity of the ESG model
(however provides a more precise and complete picture).
Therefore, one can use the ESG in Figure 10 to generate test
sequences and the ESG in Figure 12 to derive the expected
outputs for these sequences. Of course, one can also choose
not include the outputs explicitly in the model but instead
associate (or embed) them to (or into) each event in the ESG
model. In this case, the (basic) ESG in Figure 13 can also be
used.

Note that, since outputs are also considered in addition
to event-sequences, the ESG in Figure 13 is quite different
from the ESG in Figure 10. For example, “s” is indexed
3 times (“s1, “s2” and “s3”), because each of them has
a different output and can be followed by different set of
events. For similar reasons, events “u3” and “p3” are also
included in this basic ESG.

3) Structured ESG using Sub-ESG: Now using one of the
login ESGs presented above, we can construct conference
initiation ESG for a user. Figure 14 demonstrates the
corresponding structured 10 ESG.

O D50 @0

Legend:

-I: Perform login

-7 Perform join request
-lj{d): Join page - declined
-lj{a): Join page - accepted

Figure 14. gyyctured 10 ESG for user initiation.

In Figure 14, “1” refers to the IO ESG for login
interface (Figure 12). Therefore, it is a composite event.
Furthermore, “?r” is the event for making the request
for participating in a conference. There are two possible
outputs: “!j (d)” for a declined and “!j (a)” for an
accepted request. Upon acceptance, the initiation of a user
ends.

As demonstrated by the ESG in Figure 14, not only basic
ESGs but also 10 ESGs (and other types of ESGs) can be

structured.

4) Communicating ESG: Note that the initiation of a user
does not solely depend on what a user does; it also depends
on the response of the conference administrator. Thus, one
may need to consider the user and administrator behaviors
together. For this purpose, communicating IO ESGs can be
used. Figure 15 demonstrates such an ESG.

0RO OZOZOROROZCLO,

Legend:

-l Perform login

=71 Perform join request
-lw: Request message
- Acceptance

-lj{d): Join page - declined
-7y Declination

-lj{a): Join page - accepted
-7p: Process request

-ld: Declination message
-la: Acceptance message

Figure 15. Communicating 10 ESG for user intitation.

In Figure 15, the top ESG is for the user side and the
bottom ESG is for the administrator side. An administrator
logs in like a user by performing event “12” (Figure 12).
However, after logging in, the administrator processes the
conference participation requests (“p”), and accepts (!
a”) or declines (“!d”) them. Therefore, inputs to the user
initiation are not only controlled by the user but also by the
administrator. Furthermore, some outputs of user initiation
are observed by the administrator. For this reason, some
input and output events, which are internal from a user’s
perspective, are made explicit.

In the ESG in Figure 15, the output event which is
not directly observable by the user is “!w”. It represents
a request message sent by user to the administrator.
Furthermore, the input events which are controlled by the
administrator are “?x” and “?y”. These events are activated
after receiving, respectively, a declination or an acceptance
from the administrator.

Legend:

-I: Perform login

=71 Perform join request
-0: Quiescence

-lj{d): Join page - declined
-lj{a): Join page - accepted

Figure 16. Gjescent 10 ESG for user initiation.

5) Quiescent ESG: Note that Figure 15 also shows us

that in absence of a functioning administrator, there is
no response. Therefore, events “?x” or “?y” can not
commence. In such cases, to specify the lack of actions and/
or outputs, one can use quiescent ESGs. Figure 16 shows
such an ESG. For simplicity, it outlines the lack of response
from user perspective without including the administrator.
Therefore, it is derived from the ESG in Figure 14 (not
Figure 15).

In Figure 16, event “5” signifies that “?r” is a quiescent
event, i.e., after a join request is performed, there might be a
lack of response (input or output events). In this case, user is
required to log in and try to make a join request once again.

6) Timed ESG: In practice quiescence can be realized
or handled using time-outs. For example, after performing
a join request, one can wait for a specified time and then
either perform another join request or continue with the next
step if there is a response from the administrator.

OO @O
Legend:

-I: Perform login

-?r: Perform join request
-26: Time-out

-lj(d): Join page - declined
-li(a): Join page - accepted

Figure 17. Timed 10 ESG for user initiation.

In Figure 17, after performing a join request, a time-
out event is executed. After “26” time, if there is no
response from the administrator “?r” is performed again.
Otherwise, depending on the type of response (declination
or acceptance), either “!j (d) ” or “!7j (a) ” follows.

7) Pushdown ESG: Assume that our Login interface
whose basic ESG model is given in Figure 10 contains go-
back-events using which the user is allowed to take back
previously performed events, and so go-back. The ESG
extensions mentioned so far are not strong enough to fully
capture such behaviors, because an additional component,
i.e., a stack, is required to keep the track of previous events.
Figure 18 demonstrates a pushdown ESG model where
together with each event a sequence of operations are
performed on the stack in order to keep or restore previous
events.

In Figure 18, there are additional “b” events which are
called as go-back events. Each non go-back event except
performs a push operation to keep track of events, and each
go-back event performs two subsequent pop operations to
cancel the previously performed event. For example, assume
that event “u2” is executed after event “p1”. In this case,
the peek element in the stack is “ul” and the second one
is “u2”. Thus, one can only execute “b3” to return back
to the non go-back event which comes before the last non
go-back event “u2”. “b4”and “b5” can not be executed

because their related stack operations fail, and “b1”, “b2”
and “b6” can not be executed because there are no edges
from “u2” to these go-back events.

-0: Open login interface
-u: Enter userid

-p: Enter password

-s: Perform sign in

-h: Go-back

Figure 18. pyshdown ESG for Login interface.

8) ESG4WSC — A Combined Extension: Finally, in
order to demonstrate how the set of traits given in Figure
2 can be combined (and extended) to build a new model
that meets the needs of a specific type of application, we
focus on the administrator assuming that it is a web-service
(composition). Figure 19 demonstrates ESG4WSC [27][24]
model for the administrator.

-1 Perform join request
-liz Invalid user id

- Validate user

-f Failure

-ld: Declination
-5 Success
-la: Acceptance

Figure 19. gSG4WSC model for administrator web service.

In the administrator web service model (Figure 19), an
event can be either public or private, depending on whether
it can be performed or observed by the user directly.
Therefore, “?” and “:” are used to label public and private
input events, and “!” and “.” are used to label public and
private outputs events, respectively. Here, first, the user
makes a request to the administrator web service (“?r”).
Later, if the user id format is valid, the service verifies the
user (“:v”), e.g., it can call another web service to do this.
If the verification is successful (. s”), the service returns
an acceptance response (“!a”). If it fails (“. £7), the service
returns declination response (“!d”). Also, the service
returns invalid user id response (“!1”) upon a request with
invalid user id.

B. Many-Sorted Extensions
Here, we give examples for many-sorted extensions
introduced in Section III.B using the ESG in Figure 10.

1) EFG: Let us assume that our login interface is a GUI
where “o” opens the login interface and “s” closes it. Also,
while entering a user id or a password the underlying system
makes checks in order to enable or disable event “s”, and
performing “s” closes the login interface interacting with
the system. In this case, the ESG in Figure 10 gets some
syntactical changes depending on the semantics of each

event residing in it, and Figure 20 is constructed.

Legend:
-0 Openlogin interface
-u: Enter user id

-p: Enter password

-s: Perform sign in

Figure 20. ERG for Login interface.

In Figure 20, “0” is a menu open event, and thus
represented using a diamond-shaped node. The remaining
events are all system interaction events and they are
represented using circle nodes. Note that “s” is given in a
circle node, although it is also a termination event.

2) EIG: In GUI testing, one often chooses to focus on
system interaction and termination events (assuming that
other events are not fault-prone), and interactions between
them. For this purpose, EIGs can be used. Figure 21 shows
the EIG of the EFG in Figure 20.

-u: Enter user id
-p: Enter password
-s: Perform sign in

Figure 21. EIG for Login interface.

Note that, in the EIG in Figure 21, arcs do not form a
follows relation anymore. They simply show that an event is
reachable from one another. For example, arc “(p1, s)” does
not exist in the EFG (Figure 20). However, since there is a
path from “p1” to “s”, it is included in the EIG (Figure 21).

One can also make further extensions. For example,
by analyzing usage profiles, it is possible to assign some
weights or probabilities to the events and built new models
like PEFGs to employ different test generation algorithms.

V. CONCLUSION

Based on sound results of research and experience, this
paper aims to promote event-centric models and takes a first
step to enable their use in testing of various different types
of systems. To do this, a basis model which allows the use
of mathematical, sound methods is established outlining
the major benefits, and some exemplary extensions are
presented without any major or significant syntactical
changes while also considering the practical aspects.

Also, note that the traditional flow graph model of
computer programs is also an event model, where the
events are the executions of the statements or linear blocks
of statements. Therefore, the traditional adequacy criteria
(including control flow coverage and data flow coverage
criteria) can be easily adapted for more general context
of software testing. In addition, further research could be
directed to more complicated situations of event-driven
systems, such as distributed testing architectures and
testing concurrent and non-deterministic systems. In such
situations, it may be possible to regard models such as Petri
Nets as event-based models. Thus, adequacy criteria can be
defined for such models and techniques for generation of
test cases can be adapted for them.

In the future, in addition to applying our event-centric
view to industrial projects in various other domains, we
plan to study the constraints in real-life systems for the use
of proposed extensions (such as input space, output space,
number of events, complexity, etc.) and make improvements
for practical use.

REFERENCES

[1] M. Abramovici, M.A. Breuer, A.D. Friedman, Digital Systems
Testing and Testable Design, Computer Science Press, 1990.

[2] K.I. Satish, “Tutorial on design for testability (DFT) "An ASIC
design philosophy for testability from chips to systems",” Proc. 6th
Annual IEEE International ASIC Conference and Exhibit, 1993,
pp-130-139.

[3] T.W. Williams, K.P. Parker, “Design for Testability - A Survey,”
IEEE Transactions on Computers, vol. 31, no. 1, Jan. 1982, pp. 2-15.

[4] AM. Memon, M.L. Soffa, M.E. Pollack, “Coverage Criteria for
GUI Testing,” Proc. 8th European Software Engineering Conference
Held Jointly with 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-9), ACM, 2001,
pp. 256-267.

[5] F. Belli, “Finite-State Testing and Analysis of Graphical User
Interfaces,” Proc. 12th International Symposium on Software
Reliability Engineering (ISSRE 2001), IEEE, Nov. 2001, pp. 34-43.

[6] OASIS ebXML Implementation Interoperability and Conformance
(IIC) TC, "Event-driven Test Scripting Language," Working Draft
0.85, Nov. 7, 2007.

[7]1 European Telecommunications Standards Institute (ETSI), “The
Testing and Test Control Notation Version 3 (TTCN-3),” ETSI
European Standard (ES) 201 873, 2003/2003.

[8] Object Management Group, “Unified Modeling Language (UML),”
http://www.omg.org/spec/UML/.

[9] T.S. Chow, “Testing Software Design Modeled by Finite-State
Machines,” IEEE Transactions on Software Engineering, vol. SE-4,
no. 3, pp.178- 187, May 1978.

[10]Fujiwara, S., G.v. Bochmann, F. Khendek, M. Amalou, A.
Ghedamsi, “Test selection based on finite state models,” IEEE
Transactions on Software Engineering, vol. 17, no. 6, Jun. 1991,

Pp.591-603.

[11] D. Lee, M. Yannakakis, “Principles and methods of testing finite state
machines - A survey,” Proceedings of the IEEE, vol. 84, no. 8, Aug
1996, pp. 1090-1123.

[12]R. Hierons, H. Ural, “Generating a checking sequence with a
minimum number of reset transitions,” Automated Software
Engineering, vol. 17, no. 3, 2010, pp. 217-250.

[13] S. Mouchawrab, L.C. Briand, Y. Labiche, “Assessing, Comparing,
and Combining Statechart-based testing and Structural testing:
An Experiment,” Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM2007), IEEE, 2007, pp. 41-50.

[14]E.F. Moore, “Gedanken Experiments on Sequential Machines,”
Automata Studies, Annals of Mathematical Studies, vol. 34, Princeton
University Press, 1956, pp. 129-153.

[15] G.H. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell
Systems Technical Journal, vol. 34, Sep. 1955, pp.1045-1079.

[16]J. Myhill, “Finite Automata and the Representation of Events,”
Technical Report, WADD TR 57-624, Wright Patterson AFB, 1957,
pp. 112-137.

[17] J.I. Ianow, “Logic Schemes of Algorithms, Problems of Cybernetics
LI,” 1958, pp. 87-144. (in Russian)

[18] K. Jensen, N. Wirth, “Pascal User Manual and Report,” P.B. Hansen,
D. Gries, C. Moler, G. Seegmiiller, N. Wirth, Eds., Springer-Verlag,
1974.

[19] R.D. Tennent, Specifying Software, Cambridge University Press,
2002.

[20] B. Korel, “Automated Test Data Generation for Programs with
Procedures,” Proc. International Symposium on Software Testing and
Analysis (ISSTA 1996), ACM, 1996, pp. 209-215.

[21] F. Belli and C.J. Budnik, “Test Minimization for Human-Computer
Interaction,” International Journal of Applied Intelligence, vol. 26,
no.2, 2007, pp. 161-174.

[22]Private Communication: The idea of ESG extension, mainly
reflecting Professor Ina Schieferdecker’s idea, bases on early,
unpublished discussions between her and Fevzi Belli, 2006

[23] F. Belli, M. Linschulte, “On 'Negative' Tests of Web Applications,”
Annals of Mathematics, Computing & Teleinformatics, vol. 1, no. 5,
2008, pp. 44-56.

[24] A.M. Memon, Q. Xie, “Studying the Fault-Detection Effectiveness of
GUI Test Cases for Rapidly Evolving Software,” IEEE Transactions
on Software Engineering, vol. 31, no. 10, Oct. 2005, pp. 884-896.

[25] X. Yuan, A.M. Memon, “Using GUI Run-Time State as Feedback
to Generate Test Cases,” Proc. 29th International Conference on
Software Engineering (ICSE 2007), IEEE, May 2007, pp. 396-405.

[26]P. Brooks, A.M. Memon, “Automated GUI Testing Guided by
Usage Profiles,” Proc. 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), ACM, 2007, pp. 333-
342.

[27] F. Belli, A.T. Endo, M. Linschulte, A. Simao, “Model-based testing
of web service compositions,” IEEE 6th International Symposium on
Service Oriented System Engineering (SOSE2011), IEEE, 12-14 Dec.
2011, pp.181-192.

