
Developing a Single Model and
Test Prioritization Strategies for

Event-Driven Software
Renée C. Bryce, Sreedevi Sampath, Member, IEEE Computer Society, and

Atif M. Memon, Member, IEEE Computer Society

Abstract—Event-Driven Software (EDS) can change state based on incoming events; common examples are GUI and Web

applications. These EDSs pose a challenge to testing because there are a large number of possible event sequences that users can

invoke through a user interface. While valuable contributions have been made for testing these two subclasses of EDS, such efforts

have been disjoint. This work provides the first single model that is generic enough to study GUI and Web applications together. In this

paper, we use the model to define generic prioritization criteria that are applicable to both GUI and Web applications. Our ultimate goal

is to evolve the model and use it to develop a unified theory of how all EDS should be tested. An empirical study reveals that the GUI

and Web-based applications, when recast using the new model, show similar behavior. For example, a criterion that gives priority to all

pairs of event interactions did well for GUI and Web applications; another criterion that gives priority to the smallest number of

parameter value settings did poorly for both. These results reinforce our belief that these two subclasses of applications should be

modeled and studied together.

Index Terms—Combinatorial interaction testing, covering arrays, event-driven software (EDS), t-way interaction coverage, test suite

prioritization, user-session testing, Web application testing, GUI testing.

Ç

1 INTRODUCTION

EVENT-DRIVEN software (EDS) is a class of software that is
quickly becoming ubiquitous. All EDSs take sequences

of events (e.g., messages and mouse-clicks) as input, change
their state, and produce an output (e.g., events, system calls,
and text messages). Examples include Web applications,
graphical user interfaces, network protocols, device drivers,
and embedded software.

Testing for functional correctness of EDS such as stand-
alone GUI and Web-based applications is critical to many
organizations. These applications share several important
characteristics. Both are particularly challenging to test
because users can invokemany different sequences of events
that affect application behavior. Earlier research has shown
that existing conventional testing techniques do not apply to
either GUIs or Web applications, primarily because the
number of permutations of input events leads to a large
number of states, and for adequate testing, an eventmayneed
to be tested in many of these states, thus requiring a large
number of test cases (each represented as an event sequence).

Researchers have developed several models for automated
GUI testing [1] and Web application testing [2], [3], [4].

Despite the above similarities of GUI and Web applica-
tions, all of the efforts to address their common testing
problems have been made separately due to two reasons.
First is the challengeof comingupwitha singlemodelof these
applications that adequately captures their event-driven
nature, yet abstracts away elements that are not important
for functional testing. The absence of such a model has
prevented the development of shared testing techniques and
algorithms that may be used to test both classes of applica-
tions. It has also prevented the development of a shared set of
metrics that may be used to evaluate the test results of these
types of applications. Second is the unavailability of subject
applications and tools for researchers.

In this paper, we focus on the first challenge; i.e., we
develop a single abstract model for GUI and Web
application testing. To provide focus, we restrict the model
to extend our previous work on test prioritization techni-
ques for GUI [5] and Web testing [6]. This allows us to tailor
our model to prioritization-specific issues as well as to
recast our previous prioritization criteria in a form that is
general enough to leverage the single model. In the future,
we will extend our model to other testing problems that are
shared by GUI and Web applications. Our ultimate goal is
to generalize the model and to develop a theory of how EDS
should be tested.

The specific contributions of this work include: the first
single model for testing stand-alone GUI and Web-based
applications, a shared prioritization function based on the
abstract model, and shared prioritization criteria. We
validate the usefulness of these artifacts through an

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011 1

. R.C. Bryce is with the Department of Computer Science, Utah State
University, Old Main 414, 4205 Old Main Hill, Logan, UT 84322-4205.
E-mail: Renee.Bryce@usu.edu.

. S. Sampath is with the Department of Information Systems, University of
Maryland, Baltimore County, Baltimore, MD 21250.
E-mail: sampath@umbc.edu.

. A.M. Memon is with the Department of Computer Science, University of
Maryland, College Park, MD 20742. E-mail: atif@cs.umd.edu.

Manuscript received 10 Apr. 2009; revised 21 Oct. 2009; accepted 21 Dec.
2009; published online 19 Jan. 2010.
Recommended for acceptance by A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-04-0079.
Digital Object Identifier no. 10.1109/TSE.2010.12.

0098-5589/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

empirical study. The results show that GUI and Web-based
applications, when recast using the model, showed similar
behavior, reinforcing our belief that these classes of
applications should be modeled and studied together.
Other results show that GUI and Web applications behave
differently, which has created opportunities for evolving
the model and further experimentation. In future work, we
will further generalize the model by evaluating its applic-
ability and usefulness for other software testing activities,
such as test generation. Our study also makes contributions
toward test prioritization research. Many of our prioritiza-
tion criteria improve the rate of fault detection of the test
cases over random orderings of tests. We also develop
hybrid prioritization criteria that combine several criteria
that work well individually and evaluate whether the
hybrid criteria result in more effective test orders.

Structure of the paper. Section 2 provides background of
GUI testing, Web testing, and test prioritization. Section 3
presents our model; Section 4 presents the new prioritiza-
tion criteria. Section 5 applies our prioritization techniques
to seven applications and their existing test suites. Section 6
concludes with a discussion of our current and future work.

2 BACKGROUND AND RELATED WORK

This section provides background on GUI-based applica-
tions and Web applications. We summarize the common-
alities of these subclasses of EDS and how to combine them
into our test suite prioritization model.

2.1 GUI-Based Applications

A GUI is the front-end to a software’s underlying back-end
code. An end user interacts with the software via events; the
software responds by changing its state, which is usually
reflected by changes to the GUI’s widgets. The complexity
of back-end code dictates the complexity of the front-end.
For example, a single-user application such as Microsoft
Paint employs a simple single-user GUI, with discrete
events, each completely predictable in its context of use,
used to manipulate simple widgets that change their state
only in response to user-generated events. More complex
applications require synchronization/timing constraints
among complex widgets, e.g., movie players that show a
continuous stream of video rather than a sequence of
discrete frames, and nondeterministic GUIs in which it is
not possible to model the state of the software in its entirety
(e.g., due to possible interactions with system memory or
other system elements) and hence the effect of an event
cannot be predicted.

To provide focus, this paper will deal with an important
class of GUIs. The important characteristics of GUIs in this
class include their graphical orientation, event-driven input,
hierarchical structure of menus and windows, the objects
(widgets, windows, and frames) they contain, and the
properties (attributes) of those objects. Formally, the class of
GUIs of interest maybe defined as follows: A Graphical
User Interface (GUI) is a hierarchical, graphical front-end
to a software system that accepts as input user-generated
and system-generated events from a fixed set of events and
produces deterministic graphical output. A GUI contains
graphical objects; each object has a fixed set of properties.
At any time during the execution of the GUI, these

properties have discrete values, the set of which constitutes
the state of the GUI.

The above definition specifies a class of GUIs that have a
fixed set of events with a deterministic outcome that can be
performed on objects with discrete valued properties. GUI

testing, in this paper, is defined as exercising the entire
application by generating only GUI inputs with the intent of
finding failures that manifest themselves through GUI
widgets. Research has shown that this type of GUI testing
finds faults related not only to the GUI and its glue code, but
also in the underlying business logic of the application [7].

Current techniques used in practice to test such GUIs are
largely manual. The most popular tools used to test GUIs
are capture/replay tools such as WinRunner1 that provide
very little automation [1], especially for creating test cases.
There have been attempts to develop state-machine models
to automate some aspects of GUI testing, e.g., test case
generation and regression testing [8]. In our past work, we
have developed an event-flow model that represents events
and interactions [1]. The event-flow model was designed to
capture GUI events and event interactions, but it does not
model some of the Web application characteristics, as we
describe in Section 3. In this paper, we use the event-flow
model to obtain test cases for the GUI applications.

2.2 Web Applications

AWebapplication consists of a set of pages that are accessible
by users through a browser and are transmitted to the end
user over a network. A Web page can be static—where
content is constant for all users—or dynamic—where content
changes with user input. Web applications exhibit character-
istics of distributed, GUI, and traditional applications. They
can be large with millions of lines of code and may involve
significant interaction with users. Also,Web applications are
written using many programming languages, such as Java-
script, Ajax, PHP, ASP, JSP, Java servlets, and HTML.
Languages such as Javascript are referred to as client-side
languages, whereas languages such as PHP, ASP, Java
servlets, and JSP are referred to as server-side languages.
Even a simple Web application can be written in multiple
programming languages, e.g., HTML for the front end, Java
or JSP for the middle tier, and SQL as the back-end
language—which makes testing difficult.

In Web applications, an event can manifest itself in two
ways: 1) An event triggered in the client-side code by a user
results in a change to the page displayed to the user, without
any server-side code execution, e.g., when a user moves the
mouse over an HTML link, an event maybe triggered that
causes the execution of a Javascript event handler, which in
turn results in the link changing color; 2) an event is triggered
in the client-side code by a user that results in server-side
code being executed, e.g., when the user fills in a form and
clicks on the submit button, the data are sent to a server-side
program. The server-side program executes and returns the
outcomeof the execution to theuser. In ourwork,we focus on
the latter types of events, i.e., events triggered by a user that
result in server-side code execution, as they are readily
available in the form of POST or GET requests in server Web

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

1. http://mercuryinteractive.com.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

logs; we use the logs as the source for our Web application
test cases.

Web application testing, in this paper, is defined as
exercising the entire application code by generating URL-
based inputs with the intent of finding failures that manifest
themselves in output response HTML pages. Testing of
Web program code to identify faults in the program is
largely a manual task. Capture-replay tools capture tester
interactions with the application and are then replayed on
the Web application [9].

Web application testing research has explored techni-
ques to enable automatic test case generation. Several
approaches exist for model-based Web application test case
generation [2], [3], [4], [10], [11], [12], [13]. These approaches
investigate the problem of test case generation during the
development phase of an application. Another approach to
generating test cases, and the one used in this paper, is
called user session-based testing; it advocates the use of
Web application usage data as test cases [14], [15], [16].

2.3 Test Prioritization of GUI and Web Applications

Due to their user-centric nature, GUI and Web systems
routinely undergo changes as part of their maintenance
process. New versions of the applications are often created
as a result of bug fixes or requirements modification [17]. In
such situations, a large number of test cases may be
available from testing previous versions of the application
which are often reused to test the new version of the
application. However, running such tests may take a
significant amount of time. Rothermel et al. report an
example for which it takes weeks to execute all of the test
cases from a previous version [18]. Due to time constraints,
a tester must often select and execute a subset of these test
cases. Test case prioritization is the process of scheduling
the execution of test cases according to some criterion to
satisfy a performance goal.

Consider the function for test prioritization as formally
defined in [18]. Given T , a test suite, �, the set of all test
suites obtained by permuting the tests of T , and f , a
function from � to the set of real numbers, the problem is to
find � 2 � such that 8�0 2 �, fð�Þ � fð�0Þ. In this definition,
� refers to the possible prioritizations of T and f is a
function that is applied to evaluate the orderings. The
selection of the function f leads to many criteria to prioritize
software tests. For instance, prioritization criteria may
consider code coverage, fault likelihood, and fault exposure
potential [18], [19]. Binkley uses the semantic differences
between two programs to reduce the number of tests that
must be run during regression testing [20]. Jones and
Harrold reduce and prioritize test suites that are MC/DC
adequate [21]. Jeffrey and Gupta consider the number of
statements executed and their potential to influence the
output produced by the test cases [22]. Lee and He reduce
test suites by using tests that provide coverage of the
requirements [23]. Offutt et al. use coverage criteria to
reduce test cases [24]. None of these prioritization criteria
have been applied to event-driven systems.

In our past work, we have developed additional criteria
to prioritize GUI and Web-based programs. Bryce and
Memon prioritize preexisting test suites for GUI-based
programs by the lengths of tests (i.e., the number of steps in
a test case, where a test case is a sequence of events that a

user invokes through the GUI), early coverage of all unique
events in a test suite, and early event interaction coverage
between windows (i.e., select tests that contain combina-
tions of events invoked from different windows which have
not been covered in previously selected tests) [5]. In half of
these experiments, event interaction-based prioritization
results in the fastest fault detection rate. The two applica-
tions that cover a larger percentage of interactions in their
test suites (64.58 and 99.34 percent, respectively) benefit
from prioritization by interaction coverage. The applica-
tions that cover a smaller percentage of interactions in their
test suites (46.34 and 50.75 percent, respectively) do not
benefit from prioritization by interaction coverage. We
concluded that the interaction coverage of the test suite is an
important characteristic to consider when choosing this
prioritization technique.

Similarly, in the Web testing domain, Sampath et al.
prioritize user session-based test suites for Web applica-
tions [6]. These experiments showed that systematic cover-
age of event interactions and frequently accessed sequences
improve the rate of fault detection when tests do not have a
high Fault Detection Density (FDD), where FDD is a
measure of the number of faults that each test identifies
on average.

3 COMBINED MODEL

To develop the unified model, we first review how GUI and
Web applications operate. For GUI applications, action
listeners are probably the easiest—and most common—
event handlers to implement. The programmer implements
an action listener to respond to the user’s indication that
some implementation-dependent action should occur.
When the user performs an event, e.g., clicks a button,
chooses a menu item, an action event occurs. The result is
that (using the Java convention) an actionPerformed

message is sent to all action listeners that are registered on
the relevant component. For example, the following is an
action event using Java code:

public class myActionListener ... implements

ActionListener {

...

//initialization code:

button.addActionListener(this);

...

public void actionPerformed(ActionEvent e)

{doSomething();}}

The doSomething() method is invoked each time the
event is executed. Such action listeners are typically
implemented for all widgets in the GUI. Due to this reason,
in our previous work on GUI testing, we modeled each
event as an action on a GUI widget. Examples of some
events included opening menus, checking check-boxes,
selecting radio-buttons, and clicking on the Ok button. Each
event was modeled in exactly the same way. For example,
consider a “preferences setting” dialog in which a user
employs a variety of radio-button widgets, check-boxes,
and tabs to set an application’s preferences. The user
terminates the dialog explicitly by clicking the Ok button.
Our earlier GUI model would model each invocation of
each widget as an event, including the final Ok action. We

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

did not model the fact that the Ok button is the only event
that actually causes changes to the application’s settings.

On the other hand, Web application GUI widgets behave
differently. That is, some widget actions are handled at the
client (e.g., in the form of Javascript code in the browser),
whereas others, such as the Submit button trigger a GET or
POST request from the client to the server. In our earlier
work, we modeled only the GET/POST actions, i.e., those
actions that cause a client to send and receive data from the
server. Client-side events were used to set variables that
were used as parameters to the actual GET/POST event.
Consider the “preferences setting” dialog discussed earlier,
except that it is now in a Web page. Our earlier model of a
Web event would not treat all the individual radio-button
and check-box settings as individual events; instead it
would use the widget settings as parameters to the Ok

button’s POST request.
These two earlier models of GUI (each action as an event)

andWeb (only GET/POST actions as events) were incompa-
tible. If we use these two models to study the characteristics
of GUI and Web applications, we would expect to get
incorrect and incoherent results. We thus need a new unified
model that can tie these application classes together.

3.1 Modeling Windows, Widgets, and Actions

Despite the differences in how GUI and Web applications
were modeled in prior research, these two classes of
applications have many similarities. This paper draws
upon these similarities to create the single model for test
suite prioritization of both GUI and Web applications. We
now identify similarities in these applications and develop a
unified set of terms via examples.

Fig. 1a shows an example window from a GUI application
entitled “Find.” We use the term window to refer to GUI
windows such as this Find window. The window has
several widgets. A user typically sets some properties of
these widgets (e.g., checking a check-box, adding text to a
text field) and “submits” this information. Underlying code
then uses these settings to make changes to the software

state. Because of how widgets are used in the GUI, we refer
to them as parameters in this paper. We refer to the settings
for the widgets as values . We refer to the pair
<parameter name; value> as parameter-values. For in-
stance, in Fig. 1a, the “Find what” drop-down box is a
parameter with the value “software defect”; the “Match
case” check-box is a parameter with the value “false”; these
parameters are used by actions. Fig. 1b shows all possible
parameter-values for the window shown in Fig. 1a. In this
paper, we refer to a consecutive sequence of user interac-
tions on a single window as an action. An example of an
action for the Find window is the sequence “enter ‘software
defect’ in text-box,” “check ‘Match case’ check-box,” and
“click-on ‘Find Next’ button.”

Similarly, for Web applications, we refer to a Web
application page as a window. As with GUIs, widgets in a
window are referred to as parameters, and their settings as
values. Fig. 1c shows a sample Web page (one window).
Fig. 1d lists the four parameter-values on the window. For
instance, the “Login” text field is a parameter that is set to
the value “guest.”

In addition to parameters receiving values from user
interactions, an application may assign values to parameters
on the page, e.g., hidden form fields and their values. In
Fig. 1d, an example of such a parameter value is the
“FormName” parameter that gets the value “Login,” which
is set by the application. In this paper, we consider both
types of parameter values. When a user clicks on the
“Login” button on the Web page, an action is invoked, that
is, an HTTP POST or GET request is sent to the Web server.
The parameter value settings in the window are transmitted
to the Web server.

Note that we defined a GUI action very carefully so that
we have a unified terminology between GUI and Web
applications for this paper. For instance, in Web applica-
tions, there maybe multiple user interactions on a single
window in which users set values for parameters before any
information is actually sent to the Web server (e.g., a POST
or GET request). To maintain consistency in our terminology

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

Fig. 1. Examples of a GUI and Web Application. (a) Example GUI application window. (b) Nine parameter values on the GUI window. (c) Example
Web application window. (d) Four parameter values in the Web Application window.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

for both GUI andWeb applications, we unify the term action

to be the consecutive set of all user interactions on a single
window before moving to a new window. Table 1

summarizes all our terms.

3.2 Modeling Test Cases

A test case is modeled as a sequence of actions. For each
action, a user sets a value for one or more parameters. We

provide examples of test cases for both GUI and Web
applications next.

Table 2a provides a sample test case for a GUI
application called TerpWord (this application is described
later in Section 5). The test case sets nine parameters to
values and visits three unique windows. The test includes
visits to the TerpWord main window, Save, and Find
windows. An action occurs when a user sets values to one
or more parameters on a window before visiting a different
window. From Table 2a, we see that in Action 1, the user
selects File->Save from the TerpWord main menu. The
parameter values associated with this action are shown in
first two rows of Table 2b. The parameter-values set in
Action 2 occur on the Save Window to set the file name to
“exampleFile,” select the file type as plain text, and click the
OK button. The user sets parameter-values in Action 3 on
the TerpWord main window by selecting Edit->Find. Action 4
involves parameter-values on the “Find” window. The user
sets the text of the “Find what drop-box” to “software
defect” and then executes a “left-click” on the Find Next
button. Table 2a summarizes the windows, parameters, and
values in this test case and assigns unique numbers to each
window and action.

Table 3a shows a sample user-session (test case) from the

Book application (described later in Section 5) that contains
four actions. Table 3b shows the important data that we

parse from the test case. From the test case in Table 3a, we see
that the Login page is accessed with the parameter-values
<Password, guest>, <FormName, Login>, <FormAction,

login>, and <Login, guest>. For the example test case in
Table 3a, all of the parameter values are shown in Table 3b.

4 PRIORITIZATION CRITERIA

We now use the combined model to develop generalized

prioritization criteria. But before we present the criteria, we
provide a generic function that we use to formally define

the criteria and we introduce a running example to help
understand the criteria.

4.1 Prioritization Function

The function takes as input a set of test cases to be ordered
and returns a sequence that is ordered by the prioritization
criterion. Because we have developed a unified model of
GUI and Web applications, we need the function to be
extremely general so that it may be instantiated for either
application class, and is able to use any of our criteria as a
parameter. Moreover, our function is not necessarily
optimized for each individual prioritization criterion, but
rather is intentionally left general to make it easy for readers
to quickly implement our criteria. The function (called
OrderSuite) selects a test case that covers the maximum
number of criteria elements (e.g., windows and parameters)
not yet covered by already-selected test cases. The function
iterates until all test cases have been ordered.

The function for the test selection process is presented in
Fig. 2. OrderSuite takes four parameters:

1. The suite to be ordered—note that this is a set.
2. A function f that takes a single test case as input and

returns a set of elements that are of interest to the
criterion being used as the basis for prioritization. For
example, if we prioritize tests by the number of new
unique windows that they cover, then fðxÞ returns
the set of windows covered by the test case x.

3. Another function F (related to f above) operates on
the sequence of test cases, S, selected thus far. For
the example discussed in the above paragraph, F ðSÞ
returns the set of all windows covered by the test
cases in sequence S. In this example, F ðSÞ essentially
applies the above f to each element in S and takes a
set-union of the results.

4. An operation � assigns a “fitness” value to the
current test case. For the above example, � is the
composed function (SetCardinality � SetDif-

ference), i.e., “cardinality of the set difference.”
Hence, a test case that covers the maximum number
of unique windows not yet covered by the test cases
selected thus far will have the largest value for this
function’s output and hence, “most fit”; it will be
selected next to be inserted in the ordered sequence.
If two or more test cases share the top position for
selection, then a random choice is made using the
RANDOM() (returns a random real number between
0 and 1) function in BestNextTestCase.

Function OrderSuite starts with an unordered sequence
and invokes BestNextTestCase until all of the test cases

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 5

TABLE 1
Unified Terminology for GUI and Web-Based Applications

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

have been ordered. We will instantiate f , F , and � for each
of our prioritization criteria.

4.2 Running Example

Table 4 shows our running example; it contains five
windows and 18 values for the parameters on the windows.
We label the windowswith numeric values,W1 throughW5,
and label the values for the parameters on the windows as 1
through 18. For instance, the first window (W1) includes five

possible values for parameters (labeled as 1-5). In practice,
these numeric IDs for the windows and values map to the
actual window names and actual values for the parameters
on those windows. (Refer to Tables 2b and 3b in the previous
section for examples of windows and values.) We also show
six tests that allow us to provide hand traces of the criteria.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

Fig. 2. The OrderSuite function used in our work. (a) Function:
OrderSuite. (b) Function: BestNextTestCase.

TABLE 2
Example GUI Test Case

(a) Sample GUI test case. (b) Windows and user interactions in test
case.

TABLE 3
Example Web Test Case

(a) Sample user session-based Web test case. (b) Windows and
parameter values in test case.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4.3 Parameter-Value Interaction Coverage-Based
Criteria

One aspect of event-driven software and test cases which
also holds for other types of systems is their dependency on
parameters and values for execution. Interactions between
multiple parameter values make the program follow a
distinct execution path and are likely to expose faults in
the system. This basic premise led to the development of our
first set of prioritization criteria, which are based on giving
higher priority to test caseswith a large number of parameter
values interactions. The 1-way and 2-way parameter value
interaction coverage techniques select tests to systematically
cover parameter value interactions between windows.

4.3.1 1-way

The 1-way criterion selects a next test to maximize the
number of parameter values that do not appear in previously
selected tests. We hypothesize that the faster systematic
coverage of settings for parametersmay expose faults earlier.
For OrderSuite, we instantiate fðxÞ to return the set of
parameter values in test case x, F ðSÞ to return the set of
parameter values accessed by all test cases in sequenceS;� is
the function (SetCardinality � SetDifference) dis-
cussed earlier.

For our running example, the first selected test is t4
because it covers 10 parameter values, i.e., (2,3,6,8,9,10,11,12,
13,16). The next test selected is t5 because it covers six
parameter values that were not covered in the first selected
test (t4), including parameter values (1,4,5,14,15,18), whereas
tests t1 and t3 only cover four newparameter values, t2 covers
two new parameter values, and t6 does not cover any new
parameter values that were not covered in a previous test.
The final prioritized sequence is t4, t5, t2, t1, t3, and t6, where
the last three test cases are ordered at random since t4, t5, and
t2 have already covered all 1-way parameter values.

4.3.2 2-way

The 2-way criterion selects a next test to maximize the
number of 2-way parameter value interactions between
windows. We hypothesize that interactions of parameters
set to values on different windows may expose faults. For
OrderSuite, we instantiate fðxÞ to return the set of 2-way
parameter value interactions between windows accessed by
test case x; F ðSÞ is similar, except that it operates on the
sequence S; � is the function used earlier.

Table 5a shows the 2-way interactions for our running
example. Test case t4 would be chosen first since it covers

the most 2-way interactions. Table 5b shows a summary of
the 2-way interactions left to cover after t4 is chosen as the
first test case. Test case t5 is chosen after t4 because it covers
the most previously untested 2-way interactions. Test t6 is a
special case in this example since it does not cover any 2-
way interactions since only one parameter is set to a value
on a single window (W1). The final prioritized sequence is
t4, t5, t3, t1, t2, and t6, where there was a tie between t1 and
t2 for the selection of the fourth test case.

4.4 Count-Based Criteria

Another factor important to test cases for event-driven
systems is the implicit dependency between the variety and
number of window artifacts it accesses and the amount of
code covered (and possibly faults exposed) on executing
these test cases. Our next set of criteria prioritize test cases
based on counts of the number of windows, actions, or
parameter values that they cover.

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 7

TABLE 5
2-Way Interactions in the Tests of Table 4

(a) All 2-way interactions. (b) Untested interactions after t4 selected as
first test.

TABLE 4
Example Application and Example Test Suite

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4.4.1 Unique Window Coverage

In this criterion, we prioritize tests by giving preference to
test cases that cover the most unique windows that previous
tests have not covered. We hypothesize that faults will be
exposed when we visit windows and that we should visit
all windows as soon as possible. For OrderSuite, we
instantiated fðxÞ to return the set of windows accessed by
test case x; F ðSÞ is similar, except that it operates on the
sequence S; � is the function used earlier. For our running
example, we select t5 first because it covers all five windows
of the application, and then randomly select the remaining
test cases, yielding, e.g., t5, t3, t1, t4, t2, t6.

4.4.2 Action Count-Based

In this criterion, we prioritize tests by the number of actions
in each test (duplicates included). Recall, from Table 1, an
action is a sequence that sets one or more parameter values
in a single window. The prioritization includes selecting the
test cases, with preference given to those that include the
most number of actions, Action-LtoS. For OrderSuite, we
instantiated fðxÞ to return the number of actions (also
counting duplicates) in test case x; because this criterion
does not care about test cases that have already been
selected, F ðSÞ ¼ 0; � returns its first parameter, i.e., the
value of fðxÞ. Action-StoL gives priority to test cases with
the smallest number of actions. For OrderSuite, fðxÞ ¼
Negative of the f function used in Action-LtoS. For our
running example, when using Action-LtoS, there is a tie
between tests t1 and t4 as they each include six actions.
When we apply Action-StoL, test t6 is selected first because it
contains the shortest sequence of actions by covering only
one action. The final prioritized sequence for Action-LtoS is
t4, t1, t3, t5, t2, t6, where there is a tie between t4 and t1 for
the selection of the first test case and another tie between t3
and t5 for the third test case. The final prioritized sequence
for Action-StoL is t6, t2, t5, t3, t1, t4, where there is a tie
between t5 and t3 for the selection of the third test case and
between t1 and t4 for the fifth test case.

4.4.3 Parameter-Value Count-Based

Test cases contain settings for parameters that users set to
specific values. We prioritize tests by the number of
parameters that are set to values in a test case (duplicates
included). We hypothesize that test cases that set more
parameters to values are more likely to reveal faults. This
includes selecting those tests with the largest number of
parameter value settings in a test first, called PV-LtoS. For
OrderSuite, we instantiated fðxÞ to return the number of
parameters that are set to values (also counting duplicates)
in test case x; again, F ðSÞ ¼ 0 and � returns its first
parameter, i.e., the value of fðxÞ. We also prioritize in the
reverse manner by selecting those tests with the smallest
number of parameter value settings first, called PV-StoL.
Here too, fðxÞ ¼ Negative of the f function used in PV-LtoS.

For our running example, the first selected test is t4
because 10 parameters are set to values (2,3,6,8,9,10,11,12,
13,16). The next test that would be selected is t1 because it
covers eight parameter values, whereas tests t3 and t5 only
cover seven parameter values, t2 covers four parameter
values, and t6 covers one parameter value. The final

prioritized sequence for PV-LtoS is t4, t1, t5, t3, t2, and t6,
where a tie occurs between t5 and t3 for the selection of the
third test case. The final prioritized sequence for PV-StoL is
t6, t2, t3, t5, t1, and t4, where a tie occurs for the selection of
the third test case.

4.5 Frequency-Based Criteria

Our final set of criteria give higher priority to test cases that
cover windows that are perceived to be important to the EDS
from a testing perspective. Since ourWeb test cases are based
on usage profiles, in this paper, we define importance of a
windowas the number of times thewindow is accessed in the
test cases. Because of the user-centric design of event-driven
software, these windows are likely to contain more code
functionality (and likely to containmore faults), and thus test
cases that cover such windows are given higher priority.

The following three criteria differ in how they view the
frequency of presence of a window sequence in a test case,
and thus produce different prioritized orders. We consider
window sequences of size 2 in this paper.

4.5.1 Most Frequently Present Sequence (MFPS) of

Windows

In this criterion, MFPS, we first identify the most frequently
present sequence of windows, si, in the test suite and order
test cases in decreasing order of the number of times that si
appears in the test case. Then, from among the test cases
that do not use si even once, the most frequently present
sequence, sj, is identified, and the test cases are ordered in
decreasing order of the number of times sj appears in the
test case. This process continues until there are no more
remaining test cases.

For OrderSuite, our function f uses a helper function g in
its computation. Function g takes the original test suite
(Suite) as input, extracts all pairs of windows accessed by
its constituent test cases, and computes the frequency of
access of each pair. The pair p with the largest frequency is
of interest to our criterion MFPS. Function fðxÞ simply
returns the number of times p appears in test case x.
Function F trivially returns zero and operation � returns
the value of its first argument.

For the example test suite of Table 4, we determine the
number of times each sequence appears in the test suite. The
second column inTable 6 shows the frequency of presence for
each sequence ordered in decreasing order. SinceW1 ! W2,
is the most frequently present sequence, MFPS selects test
cases in decreasing order of the number of times W1 ! W2
appears in the test case. We first select t1 and t3 because they
have the sequence W1 ! W2 the greatest number of times.
Wecontinue selecting test cases that have the sequenceW1 !
W2 in them. From Table 4, we see that test cases t2, t4, and t5
have the sequenceW1 ! W2 the same number of times, i.e.,
once. Therefore, these three test cases are randomly ordered
and appended to the test suite. The prioritized order for the
test suite inTable 4 is now t1, t3, t2, t5, t4. Since t6 is the only test
case that does not have the sequence W1 ! W2, it is
appended to the end of the test order, creating the final
prioritized test order t1, t3, t2, t5, t4, t6.

4.5.2 All Present Sequence (APS) of Windows

Since MFPS gives importance to only the frequency of
occurrence of a single most frequently present sequence, the

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

criterion is likely to lose important information about other
frequently present sequences which may not be accessed as
many times as the most frequently present sequence but are
still accessed frequently in the test suite. To accommodate
all present sequences during prioritization, the APS
criterion is proposed. In APS, the frequency of occurrence
of all sequences is used to order the test suite. For each
sequence, si, in the application, beginning with the most
frequently present sequence, test cases that have maximum
occurrences of these sequences are selected for execution
before other test cases in the test suite.

Consider the example test suite from Table 4 and the
corresponding frequency table shown in Table 6. The third
column in Table 6 shows the test cases that have the
maximum occurrences of the corresponding sequence.
Starting with sequence W1 ! W2, we see that test cases t1
and t3 have the maximum occurrence of this sequence (i.e.,
twice). Thus, they are selected first for the prioritized order.
The tie between them is broken at random. The prioritized
order is now t1, t3. Then, the APS algorithm proceeds to the
next most frequently present sequence, W2 ! W3. From
Table 6, since t4 covers W2 ! W3 the maximum number of
times, and t4 is not already selected in the prioritized order,
test case t4 is selected next for the prioritized order. The next
sequence from Table 6 is W3 ! W4. From the two test cases
in W3 ! W4’s test cases list, test case t4 is already in the
prioritized order. The only remaining test case correspond-
ing to this sequence, t5, is added to the prioritized order. The
prioritized order is now t1, t3, t4, t5. Since all of the test cases
corresponding to the next three sequences in Table 6 are
already in the prioritized order, the algorithm then adds t2
for sequenceW2 ! W5 to the prioritized order. All of the test
cases corresponding to the remaining sequences in Table 6
are already in the prioritized order. When all rows in the
table are covered, any remaining test cases in the test suite are
randomly ordered and appended to the prioritized order of
test cases. The final prioritized order is t1, t3, t4, t5, t2, t6.

For OrderSuite, our function f again uses a new helper
function g in its computation. Function g initializes itself by
taking the original test suite (Suite) as input, extracting all
pairs of windows accessed by its constituent test cases, and
computing the frequency of access of each pair. It also
maintains a list of test cases with each frequency entry.
Actually, the implementation of g maintains an object
similar to Table 6. It also has access to the object S of
OrderSuite, which contains all tests selected thus far.

Function fðxÞ invokes g with parameter x. If x is in S, then
g returns zero. Otherwise, it returns the largest frequency
value (column 2 of Table 6) associated with x (from the lists
in Column 3 of Table 6). Function F trivially returns zero
and operation � returns the value of its first argument.

As seen from this example, instead of focusing on only a
single most frequently present sequence, APS also gives
importance to other frequently present sequences. Thus,
W2 ! W3 is given consideration and the test case that
covers this sequence is selected before other test cases in the
prioritized order, e.g., test case t4, which appeared at the
end of the prioritized order in MFPS, is given priority and
ordered third by APS.

4.5.3 Weighted Sequence of Windows (Weighted-Freq)

While MFPS gives importance to a particular window
sequence and APS selects test cases based on only one
sequence, the weighted technique assigns each test case a
weighted value based on all of the window sequences it
contains and the importance (the weight of a sequence of
windows is measured by the number of times the sequence
appears in the suite) of the window sequence.

Initially, we identify the frequency of appearance of each
unique sequence of windows in the test suite and build a
weighted matrix for each unique window sequence. This
frequency of appearance is the weight of the unique
sequence of window. The second column in Table 6
represents the weight of each sequence in the example test
suite Table 4. In the following example, the weight of a
sequence, e.g., W1 ! W4, is denoted as WSw1!w4.

Thereafter, in each test case, we count the number of
times each unique sequence of windows appears. The test
case has a weighted value based on the summation of the
product of the number of times each unique sequence of
windows appears in the test case and the corresponding
weight of this unique sequence in the weighted matrix table.

Table 7 shows the weighted value for each test case for the

example test suite from Table 4. Each test case in the test suite

is assigned aweighted value based on thewindow sequences

that the test case contains. Test cases are prioritized by

decreasing order of theirweighted value. In this example, the

final prioritized order is t3, t4, t1, t5, t2, t6. By assigning a

weighted value to each test case based on all of the sequences

contained in the test case,Weighted-Freq identifies test case t3
as the most important test case,since it covers both the

important sequences, W1 ! W2 and W2 ! W3.
For OrderSuite, fðxÞ simply computes the weighted

value of x, F trivially returns zero, and � trivially returns
its first argument.

5 EMPIRICAL STUDY

The two main underlying questions this research strives to
answer are: 1) Does the model help us to study GUI and Web
application testing using a common set of metrics/criteria? and
2) Does the model help to identify commonalities between GUI
and Web applications?

Only because of the development of the model
proposed in Section 3 were we able to define prioritiza-
tion criteria that accurately capture characteristics of both

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 9

TABLE 6
Frequency of Presence Table

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUI and Web systems. Thus, the successful development
of the prioritization criteria presented in Section 4
implicitly answers question 1. To study question 2, we
take a more quantitative approach. We design an
empirical study that studies the effectiveness of the
prioritization criteria to determine whether the criteria,
and therefore the model, help in identifying commonal-
ities between the two classes of applications. The two
research questions in this empirical study are:

1. RQ1: Which prioritization criteria are among the

best/worst criteria for both GUI and Web systems?
2. RQ2: (Exploratory Question) Is a combination of

different prioritization criteria more effective than

any single criterion? Because each criterion targets a

unique aspect of the EDS, this question is designed

to explore whether a combination of criteria (such a

combination would account for multiple aspects of

the EDS) is more effective than any single criterion.

5.1 Subject Applications

We use four GUI and three Web-based applications, shown

in Table 8.

5.1.1 TerpOffice GUI Application Suite

The GUI applications are part of an open source office suite

developed at the Department of Computer Science of the

University of Maryland by undergraduate students of the

senior Software Engineering course. It is called TerpOffice2

and includes TerpCalc (a scientific calculator with graphing

capability), TerpPaint (an image editing/manipulation

program), TerpSpreadSheet (a spreadsheet application),

and TerpWord (a small word processor). They have been

implemented using Java. We have described these applica-

tions in several earlier reported studies [1].

5.1.2 Web Application Suite

The Web applications were partly developed at the
University of Delaware and used in earlier reported studies
[16]. Book allows users to register, login, browse for books,
search for books by keyword, rate books, add books to a
shopping cart, modify personal information, and logout.
Since our interest was in testing consumer functionality, we
did not include the administration code in our study [16].
Book uses JSP for its front end and a MySQL database back
end. CPM enables course instructors to login and create
grader accounts for teaching assistants. Instructors and
teaching assistants create group accounts for students,
assign grades, and create schedules for demonstration time
slots. Users interact with an HTML application interface
generated by Java servlets and JSPs. Masplas enables users
to register for a workshop, upload abstracts and papers, and
view the schedule, proceedings, and other related informa-
tion. Masplas is written using Java, JSP, and MySQL.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

TABLE 8
Composition of the Applications and Test Suites in Our Study

2. http://www.cs.umd.edu/users/atif/TerpOffice.

TABLE 7
Weighted Frequency Table

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Table 8 gives an overview of our subject application’s
characteristics, such as the lines of code in each application,
number of classes, methods, branches, windows, and events.
The applications are nontrivial as most contain several
thousand lines of code, between 9 to 219 classes, 22 to
644 methods, and between 108 to 1,720 branches. The test
cases exercise between 85 to 4,166 parameter-values on the
user interfaces of these applications. The longest test cases for
each of these applications exercise between 47 to 585 actions.

5.2 Test Suites

Models of the TerpOffice applications, called event-flow
graphs [1], were used to generate test cases. The test case
generation algorithm has also been described earlier [1]; in
summary, the algorithm is based on graph traversal;
starting in one of the events (represented by a node in the
event-flow graph) in the application’s main window, the
event-flow graphs were traversed, outputting the encoun-
tered event sequences as test cases. In all, 300 test cases
were generated for each application.

The suites for Web applications are based on usage of the
application, also referred to as user-session-based test suites
[15]. These suites were previously collected by Sampath
et al. [16]. A total of 125 test cases were collected for Book by
asking for volunteer users by sending e-mails to local
newsgroups and posting advertisements in the University
of Delaware’s classifieds. For CPM, 890 test cases were
collected from instructors, teaching assistants, and students
using CPM during the 2004-2005 and 2005-2006 academic
years at the University of Delaware. A total of 169 test cases
were collected when our third subject application, Masplas,
was deployed for the Mid-Atlantic Symposium on Pro-
gramming Languages and Systems in 2005.

Table 8 shows the characteristics of the test cases used in
our study, such as the total number of test cases for each
application and statistics on the lengths of the test cases. We
also report the total number of unique parameter values and
the percentage of 2-way parameter value interactions
covered in the test suites. We compute the percentage of
2-way parameter value interactions by counting the number
of unique parameter values on each window that can be
selected in combination with unique parameter values on
other windows within the application. For instance, if
window 1 has four parameter values (1, 2, 3, and 4) and
window 2 has two parameter values (5 and 6), there are 4 �
2 ¼ 8 parameter-value interactions. These parameter-value
interactions include: (1, 5), (2, 5), (3, 5), (4, 5), (1, 6), (2, 6), (3, 6),
and (4, 6). We do not consider constraints of invalid
interactions here, but may consider it in future work.

5.3 Faults

Each of our applications has a preexisting fault matrix, i.e., a
representation of a set of faults known to be detected by
each test case. Recall from Section 2 that GUI/Web testing
refers to exercising the entire application code with the
intent of identifying failures that manifest themselves in the
output GUI widgets/response HTML pages, respectively.
Therefore, the faults in our study are seeded in the
underlying application code and the test oracles analyze
the output GUI widgets/response HTML pages for failures.
These faults were similar to those described in earlier

reported research for the TerpOffice applications [1] and for
the Web-based applications [16].

During fault seeding of the GUI applications, classes of
known faults were identified, and several instances of each
fault class were artificially introduced into the subject
program code at relevant points. Care was taken so that

1. the artificially seeded faults were similar to faults
that naturally occur in real programs due to mistakes
made by developers,

2. faults were seeded in code that was covered by an
adequate number of test cases, e.g., they were
seeded in code that was executed by more than
20 percent and less than 80 percent of the test cases,

3. faults are seeded “fairly,” i.e., an adequate number
of instances of each fault type were seeded,

4. we avoid fault interaction, and
5. we employ multiple people to seed the faults.

Multiple fault-seeded versions of each application were
created. We adopted a history-based approach to seed GUI
faults, i.e., we observed “real” GUI faults in real applications.
During the development of TerpOffice, a bug tracking tool
called Bugzilla3 was used by the developers to report and
track faults in the previous version of TerpOffice while they
were working to extend its functionality and developing the
subsequent version. The reported faults are an excellent set of
representative faults that are introduced by developers
during implementation. Some examples include modify
relational operator (>;<;>¼; <¼;¼¼; ! ¼), negate condition
statement, modify arithmetic operator (þ;�; �; =;¼;þþ;�;
þ ¼;� ¼; � ¼; = ¼), and modify logical operator (&&, jj).

As described in previous work [16], faults in the Web
applications were seeded manually by graduate and under-
graduate students. In addition, some naturally occurring
faults discovered during deployment were also seeded in
the applications. In general, five types of faults were seeded
into the applications—data store (faults that exercise
application code interacting with the data store), logic
(application code logic errors in the data and control flow),
form (modifications to parameter-value pairs and form
actions), appearance (faults which change the way in which
the user views the page), and link (faults that change the
hyperlinks location). Fault categories are not mutually
exclusive. The fault matrices used in this paper are
generated by using the struct oracle for CPM and Masplas
and the diff oracle for Book [25]. Fault matrices used in this
paper were collected using the with_state replay mechanism
[16], where the application state is restored before each test
case is replayed on the fault-seeded version to closely match
the clean (non-fault-seeded) execution.

Table 8 shows the number of faults seeded in each
application, and statistics on min., max., and avg. number of
faults found by a test. In addition to traditional ways to
evaluate the characteristics of faults seeded in the applica-
tions, we define a metric called the Fault Detection Density,
which is a measure of the average number of faults detected
by each test case [6]. Given a set of test cases, ti 2 T and a set
of faults F detected by test cases in T , let tfi be the number of
faults detected by ti, then the fault detection density

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 11

3. http://bugs.cs.umd.edu.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FDD ¼ tf1 þ tf2 þ � � � þ tfn
jT j � jF j : ð1Þ

FDD is the ratio of the sum of the total number of faults
detected by each test case tfi and the total number of test
cases jTj, normalized with respect to the total number of
faults detected jFj. An FDD of 1 for a test suite indicates that
each test case in the suite detects every fault. Table 8 shows
the FDD for each of our subject applications. A high value
for FDD means that each test case in the suite is detecting a
large number of the faults. In such cases, even a random
ordering of the test cases will yield an effective prioritized
order. A low value for FDD indicates that each test case
detects only a small number of the faults. The test suites for
our applications have a relatively low FDD, in the range of
0.02-0.19. The low FDD values, in combination with our
control of Random, reduce our threats to internal validity.

5.4 Evaluation Metrics

We study RQ1 and RQ2 using two metrics which aim to
capture the effectiveness of a prioritization criterion. For
evaluating the prioritization criteria, we assume that prior
knowledge of the faults detected by the regression test
suites is available to the testers.

Metric 1. The first evaluation metric measures the rate of
fault detection of the prioritization criteria using the Average
Percentage of Faults Detected (APFD) metric defined by
Rothermel et al. [18]. APFD is a commonly used metric to
evaluate the effectiveness of prioritized test orders [18]. We
present theAPFD using the notation in [18]. For a test suite T
with n test cases, if F is a set of m faults detected by T , then
let TFi be the position of the first test case t in T 0, where T 0

is an ordering of T , that detects fault i. Then, the APFD
metric for T 0 is given as

APFD ¼ 1� TF1 þ TF2 þ TF3 þ � � � þ TFm

mn
þ 1

2n
: ð2Þ

Informally, APFD measures the area under the curve that
plots test suite fraction and the number of faults detected by
the prioritized test case order.

Metric 2. The second evaluation metric measures the
number of test cases executed before all faults are
detected. We are interested in determining which prior-
itization criterion finds all the faults with the least number
of test cases.

5.5 Implementation

We implemented each of the prioritization criteria as
described in Section 4 in C++ and Perl. In all of the
implementations, in case of a tie between two or more tests
that meet the prioritization criterion, a random tie-breaking
strategy is implemented using the RANDOM() function
discussed earlier in the text that describes Fig. 2. To account
for the nondeterminism introduced by random tie-breaking,
we execute each prioritization criteria five times and report
the average rate of fault detection, and APFD.

In addition to the criteria described earlier, we devel-
oped three controls—a greedy optimal ordering (G-Best), a
greedy worst ordering (G-Worst), and a random ordering
(Random). The greedy criterion (G-Best) uses a greedy step to
select the next test case that detects the most yet-undetected
faults and repeat this process until all the tests are selected.

This greedy algorithm does not guarantee an optimal
ordering. For instance, assume that we have four test cases,
as shown in the fault matrix in Table 9. In G-Best, test t1 is
chosen first because it covers the most unique faults. There
is then a 3-way tie between tests t2, t3, and t4 because each
will locate exactly one new fault that t1 did not already
identify. Test case t3 is chosen by the random tie-breaking.
After this, there is another tie since both t2 and t4 will cover
the last fault. With random tie-breaking, we assume that t4
is chosen next, followed by t2. All of the faults are found
after three test cases in this example. However, the greedy
step did not guarantee the optimal ordering. In this
example, the ordering of t2! t3! t4! t1 is optimal because
all of the faults are found after two test cases, as opposed to
three test cases for the greedy best example.

In contrast to the greedy best ordering, we define a greedy
worst ordering (G-Worst) criterion, where in each iteration,
the algorithm selects the next test case that covers the least
uncovered faults. We repeat this until all of the tests are
selected. Ordering by Random selects a next test uniformly
at random.

5.6 Results

We now present the results for each research question.

5.6.1 RQ1: Which Prioritization Criteria Are Among the

Best/Worst Criteria for Both GUI and Web

Systems?

We summarize the results for this question based on two
metrics: 1) APFD and 2) the number of tests used to find
100percent of the faults. First,wepresent the resultswhen the
criteria are evaluated w.r.t. their rate of fault detection using
the APFD metric. The APFD values for the prioritization
criteria are shown in tabular form. Due to space constraints,
the tables report theAPFDafter every 10percent increment of
the test suite execution forTerpCalc andBookonly (results for
other applications are presented in this paper’s supplemental
material,which canbe foundon theComputer SocietyDigital
Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2010.12). In each table,wehighlight the bestAPFDvalues
for each incrementwith a bold font, alongwith the results for
the G-Best control. We note that none of our prioritization
criteria outperform G-Best nor are any worse than G-Worst.

For TerpCalc, the results in Table 10 show that
prioritization by PV-LtoS has the overall best APFD with
2-way slightly outperforming PV-LtoS in the first 10 percent
of test suite execution. The prioritization criteria of 2-way,
Weighted-Freq, and MFPS are in the second tier of best
prioritization criteria. For instance, 2-way is more effective

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

TABLE 9
An Example Fault Matrix with Four Test Cases
That Find the Set of Faults: f ¼ f1; 2; 3; 4; 5g

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

than Weighted-Freq and MFPS in the first 10 percent of the
test execution, but for the remainder of the test execution,
Weighted-Freq and MFPS each alternate in obtaining the
second best APFD and are both in the range of 2 percent
better or worse APFD of each other. The prioritization
criteria of 1-way and UniqWin are slow starters, but after the
first 10 percent increment of test suite execution, they
become more competitive. The prioritization criteria of
Action-LtoS, PV-StoL, and Random are less effective than the
other criteria.

For Book, the results in Table 11 show that APS produces
the best APFD, although 1-way maintains an APFD that is
within 0.3 percent of APS throughout the entire test suite
execution. 1-way is 0.02 percent more effective than APS
during 50-90 percent test suite execution. Only three
additional prioritization criteria have better or equal APFDs
than Random after all tests are executed. These include
2-way, PV-LtoS, and UniqWin. The criteria that produce
worse APFDs than Random include MFPS, Action-LtoS,

Weighted-Freq, PV-StoL, and Action-StoL. This is the first
study in which we have found that many of our prioritiza-
tion criteria are less effective than Random. To study this
behavior in Book’s test suite, we examine the fault detection
density of Book’s test cases (shown in Table 8). A fault
detection density of 1 for a test suite indicates that each test
case in the suite detects every fault. As seen from Table 8,
Book’s test cases have an FDD of 0.59 (compared to 0.056 for
CPM and 0.19 for Masplas). With a small test suite size
(125 test cases) and a high FDD, Random has a greater chance
of selecting a test case that detects several of the Web
application’s faults and thus creates an effective test suite
order.

In summary, techniques that give priority to large
numbers of parameter values (PV-LtoS) or large number
of interactions between parameter values (2-way) generally
tend to perform well in both the GUI and Web application
domains. The frequency-based prioritization techniques
created the best prioritized test orders in two of the three

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 13

TABLE 10
APFD for TerpCalc (Each Increment of 10 Percent of the Test Suite Is 30 Tests)

TABLE 11
APFD for Book (Each Increment of 10 Percent of the Test Suite Is 12 Tests)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Web applications. The Action-based prioritization techni-
ques (Action-LtoS and Action-StoL) work better for the Web
applications than the GUI applications, suggesting that it
might not be enough to look at the number of actions
covered when prioritizing test cases for pure GUIs;
however, in some cases, they may work well for the Web-
domain. PV-StoL is always a poor technique for prioritiza-
tion, and in most cases, Action-StoL was the next worst
prioritization technique, suggesting that prioritizing test
cases such that fewer parameter values are covered early in
the test execution cycle is a bad choice.

Table 12 summarizes the results for RQ1 by showing the
best 3 and worst 3 criteria. We see that 2-way (underlined)
was either the best or the second best technique in three out
of the four GUI applications; it also did well for our Web
applications. PV-StoL (also underlined) was the worst for all
applications except Book, for which it was second worst.
This was an encouraging result as it demonstrated that GUI
and Web applications show common behavior when
studied using the new model. Note that 2-way interactions
for the applications will consider actions that cover at least
two different windows, as required by our new model.

This finding is also consistent with our earlier results [5],
[6] as well as that of others; previous studies have shown that
combinatorial testing is useful at detecting faults that are
triggered by interactions of two or more parameter-values
[26] andwebelieve that the concept of covering combinations
of parameters set to different values is useful for test suite
prioritization. For instance, Kuhn et al. study 109 medical
devices that have some type of software control and find that
97 percent of flaws are uncovered with 2-way interaction
coverage [27]. Several other studies have also shown that 2-
way interaction coverage is useful; see [28] and references
therein for a summary of many of these studies.

Next, we examine the prioritization criteria using our
second metric, which measures the number of tests that each
prioritization technique chooses before locating 100 percent
of the faults. Table 13 shows the number of tests that are
executed to locate 100 percent of the faults for the seven
applications. We show only the best criteria in the table. The
number in parenthesis next to the application name in the
heading in Table 13 represents the total number of test cases
in that application.

Table 13 shows thatWeighted-Freq finds 100 percent of the
faults soonest after 217 test cases for TerpCalc andafter 15 test
cases forMasplas. For both applications, this is faster than the
G-Best. As described earlier in Section 4, this is due to the
greedy implementation of the G-Best algorithm that selects
one test at a time, where each “next test” is selected to cover
the maximum number of faults in relation to the previously

selected tests. We also see that Action-StoL finds 100 percent
of the faults sooner than the other prioritization criteria,
using 151 test cases for TerpPaint and 65 for Book. 2-way finds
100 percent of all faults in the fewest test cases or
TerpSpreadsheet and CPM. Table 13 also shows that 1-way
is better than the other criteria in finding 100 percent of the
faults in TerpWord, using 94 out of 300 test cases. Thus, four
out of the 10 prioritization criteria, 1-way, 2-way, Weighted-
Freq, and Action-StoL, consistently found 100 percent of the
faults earlier than the other criteria for our seven subject
applications. These results show that GUI and Web applica-
tions exhibit similar behavior for many of the criteria.

5.6.2 RQ2: Is a Combination of Different Prioritization

Criteria More Effective than Any Single Criterion?

Based on the above results, we find that test cases prioritized
by usage-based frequency and interaction-based criteria
often perform better than other criteria. As a preliminary
proof-of-concept,we examine these hybrid techniques for the
Book application and test suite. We choose to examine Book
because it is oneexample subject application inwhich someof
the frequency-based prioritization criteria perform better
than 2-way. However, using the frequency-based prioritiza-
tion criteria alone suggests that there may be room for
improvement because they select blocks of 10 percent,
20 percent, or more of the test cases from the test suite
without increasing the cumulative APFD. Therefore, we
examine whether a hybrid combination of 2-way with APS,
MFPS, or Weighted-Freq can further improve the results.
Again,we emphasize that this is just one proof-of-concept for
a hybrid technique and that future work may examine the
exponential number of hybrid possibilities. The two hybrid
techniques that combine the frequency-based and interac-
tion-based prioritization criteria are studied in the following
ways:

1. Prioritize test cases by the frequency-based prior-
itization criteria:

(MFPS,APS,Weighted-Freq)until the first10percent
block of test cases encountered where there is no
increase in APFD, then switch to interaction-based
prioritization criteria (2-way).

2. Prioritize test cases by the frequency-based prior-
itization criteria:

(MFPS, APS, Weighted-Freq) until the first 20 per-
cent block of test cases encountered where there is
no increase in APFD, then switch to interaction-
based prioritization criteria (2-way).

From Table 11, we note that APS has a better APFD than
2-way. When a hybrid technique is used, e.g., both APS and
2-way are used to create a prioritized test order, we see in

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

TABLE 12
Best and Worst Criteria for Prioritization

TABLE 13
Number of Tests for 100 Percent Fault Detection

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Table 14 that the prioritized test cases by the hybrid
technique of APS-2way-20%-no-APFD-increase performs
better than 2-way in the latter 30 percent of the test suite
execution. The APS-2way-10%-no-APFD-increase does not
increase the APFD over APS alone. When we combine
MFPS and 2-way, we find that the hybrid techniques MFPS-
2way-10%-no-APFD-increase and MFPS-2way-20%-no-APFD-
increase achieve the best overall APFD. Also, when
Weighted-Freq and 2-way are combined to create hybrid
prioritization techniques, the hybrid techniques create test
orders that achieve higher APFDs than the two techniques
Weighted-Freq or 2-way alone. In all but one case here, we
find that these hybrid techniques improve the APFD over
2-way or APS alone. Again, this is just one proof-of-concept
example and future work may examine the APFD of hybrid
techniques in further detail.

Table 15 presents the results for RQ2 using the second
metric, which measures the number of test cases needed to
locate 100 percent of the faults. We find that the hybrid
techniques find 100 percent faults quicker than the control
Random, but neither are as effective as 2-way or Weighted-
Freq. This exploratory evaluation of RQ2 suggests that

hybrid techniques may have a better rate of fault detection
than the individual techniques. However, the hybrid
techniques do not necessarily find 100 percent of the faults
earlier. Further study is required on the hybrid techniques
and their effectiveness.

6 CONCLUSIONS AND FUTURE WORK

Previous work treats stand-alone GUI and Web-based
applications as separate areas of research. However, these
types of applications have many similarities that allow us to
create a single model for testing such event-driven systems.
This model may promote future research to more broadly
focus on stand-alone GUI and Web-based applications
instead of addressing them as disjoint topics. Other
researchers can use our common model to apply testing
techniques more broadly. Within the context of this model,
we develop and empirically evaluate several prioritization
criteria and apply them to four stand-alone GUI and three
Web-based applications and their existing test suites. Our
empirical study evaluates the prioritization criteria. Our
ability to develop prioritization criteria for two types of
event-driven software indicates the usefulness of our
combined model for the problem of test prioritization.
Our results are promising as many of the prioritization
criteria that we use improve the rate of fault detection over
random ordering of test cases. We learn that prioritizations
by 2-way and PV-LtoS generally result in the best improve-
ment for the rate of fault detection in our GUI applications
and one of our Web applications. However, for our Web
applications, frequency-based techniques provide the best
rate of fault detection in two out of the three subjects. We
attribute this to the source of the test cases. The test suites
for the Web applications come from real user-sessions,
whereas the GUI test cases were automatically generated
without influence from users. While the majority of
prioritization techniques provide benefits in our study, we
caution readers that two techniques, Action-StoL and
PV-StoL, generally provided the worst rates of fault
detection. This was expected as we anticipated that test
cases that do not exercise much functionality are less likely

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 15

TABLE 14
Book: Hybrid—Average Percentage Faults Detected

TABLE 15
Book: Number of Tests Run to Find 100 Percent of All Faults

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

to find faults. As a proof-of-concept, we examine a hybrid
technique that uses combinations of multiple prioritization
criteria. These preliminary results motivate future research
on hybrid prioritization criteria.

We present our threats to validity in this section because
several opportunities for future research are created by the
threats to validity of the results of our empirical study. For
example, threats to external validity are factors that may
impact our ability to generalize our results to other
situations. The first threat is the validation of the unified
model. We validate the model through the application of
test suite prioritization by using several prioritization
criteria and three controls applied to seven applications.
While this work contributes an initial validation of the
model, the domains of both testing and EDS are much
larger. For instance, broader testing activities such as test
generation and test suite reduction can further validate the
unified model in the future. In regard to EDS, we use GUI
and Web-based applications. Future work may examine a
different type of EDS, such as embedded systems, in this
model. The second largest threat to external validity is that
we only run our data collection and test suite prioritization
process on seven programs and their existing test suites,
which we chose for their availability. These programs range
from 999 to 18,376 lines of code, contain 9 to 219 classes, 22
to 664 methods, and 108 to 1,521 branches. However, these
programs may still not be representative of the broader
population of programs. An experiment that would be more
readily generalized would include multiple programs of
different sizes and from different domains. In the future, we
may conduct additional empirical studies with larger EDS
to address this threat. Moreover, the characteristics of the
original test suites impact our results in how they were
constructed and their fault detecting ability. The seeded
faults also impact the generalization of our results. We
provide the FDD values for each test suite and use Random
as a control to compare our prioritization techniques in
order to minimize this threat. Future work may examine
real systems that have real faults that were not seeded.

Threats to construct validity are factors in the study
design that may cause us to inadequately measure concepts
of interest. In our study, we made simplifying assumptions
in the area of costs. In test suite prioritization, we are
primarily interested in two different effects on costs. First,
there is potential savings obtained by running “more
effective” test cases sooner. In this study, we assume that
each test case has a uniform cost of running (processor time)
and monitoring (human time); these assumptions may not
hold in practice. Second, we assume that each fault
contributes uniformly to the overall cost, which again may
not hold in practice. Future work may examine projects with
readily available data on the costs of faults. Another threat to
construct validity is that we report results in increments of
10 percent for the hybrid experiments. In the future, we may
report the results in different increments (as revealed by a
statistical method) that are more appropriate to the incre-
ments used to combine criteria in the hybrid experiments.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers whose com-
ments and suggestions helped to extend the second
research question, reshape its results, and improve the flow

of the text. This work was partially supported by the US

National Science Foundation (NSF) under NSF grants CCF-

0447864 and CNS-0855055, and US Office of Naval Research

grant N00014-05-1-0421.

REFERENCES

[1] A.M. Memon and Q. Xie, “Studying the Fault-Detection Effec-
tiveness of GUI Test Cases for Rapidly Evolving Software,” IEEE
Trans. Software Eng., vol. 31, no. 10, pp. 884-896, Oct. 2005.

[2] A. Andrews, J. Offutt, and R. Alexander, “Testing Web
Applications by Modeling with FSMs,” Software and Systems
Modeling, vol. 4, no. 3, pp. 326-345, July 2005.

[3] G.D. Lucca, A. Fasolino, F. Faralli, and U.D. Carlini, “Testing Web
Applications,” Proc. IEEE Int’l Conf. Software Maintenance, pp. 310-
319, Oct. 2002.

[4] F. Ricca and P. Tonella, “Analysis and Testing of Web Applica-
tions,” Proc. Int’l Conf. Software Eng., pp. 25-34, May. 2001.

[5] R.C. Bryce and A.M. Memon, “Test Suite Prioritization by
Interaction Coverage,” Proc. Workshop Domain-Specific Approaches
to Software Test Automation in Conjunction with Sixth Joint Meeting of
the European Software Eng. Conf. and ACM SIGSOFT Symp.
Foundations of Software Eng., pp. 1-7, Sept. 2007.

[6] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A.G.
Koru, “Prioritizing User-Session-Based Test Cases for Web
Application Testing,” Proc. IEEE Int’l Conf. Software Testing,
Verification, and Validation, pp. 141-150, Apr. 2008.

[7] P. Brooks, B. Robinson, and A.M. Memon, “An Initial Character-
ization of Industrial Graphical User Interface Systems,” Proc. IEEE
Int’l Conf. Software Testing, Verification, and Validation, pp. 11-20,
2009.

[8] L. White, “Regression Testing of GUI Event Interactions,” Proc.
Int’l Conf. Software Maintenance, pp. 350-358, Nov. 1996.

[9] “Web Site Test Tools and Site Management Tools,” http://
www.softwareqatest.com/qatweb1.html, Apr. 2009.

[10] D.C. Kung, C.-H. Liu, and P. Hsia, “An Object-Oriented Web Test
Model for Testing Web Applications,” Proc. First Asia-Pacific Conf.
Quality Software, pp. 111-120, Oct. 2000.

[11] W. Wang, S. Sampath, Y. Lei, and R. Kacker, “An Interaction-
Based Test Sequence Generation Approach for Testing Web
Applications,” Proc. IEEE Int’l Conf. High Assurance Systems Eng.,
pp. 209-218, 2008.

[12] W. Halfond and A. Orso, “Improving Test Case Generation for
Web Applications Using Automated Interface Discovery,” Proc.
Sixth Joint Meeting of the European Software Eng. Conf. and ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 145-154, Sept.
2007.

[13] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D.
Ernst, “Finding Bugs in Dynamic Web Applications,” Proc. Int’l
Symp. Software Testing and Analysis, pp. 261-272, July 2008.

[14] N. Alshahwan and M. Harman, “Automated Session Data Repair
for Web Application Regression Testing,” Proc. IEEE Int’l Conf.
Software Testing, Verification, and Validation, pp. 298-307, Apr. 2008.

[15] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II, “Leveraging
User Session Data to Support Web Application Testing,” IEEE
Trans. Software Eng., vol. 31, no. 3, pp. 187-202, May 2005.

[16] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.S. Green-
wald, “Applying Concept Analysis to User-Session-Based Testing
of Web Applications,” IEEE Trans. Software Eng., vol. 33, no. 10,
pp. 643-658, Oct. 2007.

[17] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma,
“Regression Testing in an Industrial Environment,” Comm.
ACM, vol. 41, no. 5, pp. 81-86, May 1988.

[18] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Prioritiz-
ing Test Cases for Regression Testing,” IEEE Trans. Software
Eng., vol. 27, no. 10, pp. 929-948, Oct. 2001.

[19] S. Elbaum, A.G. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE Trans.
Software Eng., vol. 28, no. 2, pp. 159-182, Feb. 2002.

[20] D. Binkley, “Using Semantic Differencing to Reduce the Cost of
Regression Testing,” Proc. Int’l Conf. Software Maintenance, pp. 41-
50, Nov. 1992.

[21] J.A. Jones and M.J. Harrold, “Test-Suite Reduction and Prioritiza-
tion for Modified Condition/Decision Coverage,” IEEE Trans.
Software Eng., vol. 29, no. 3, pp. 195-209, Mar. 2003.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 37, NO. X, XXXXXXX 2011

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[22] D. Jeffrey and N. Gupta, “Test Case Prioritization Using Relevant
Slices,” Proc. Int’l Computer Software and Applications Conf., pp. 411-
418, Sept. 2006.

[23] J. Lee and X. He, “A Methodology for Test Selection,” J. Systems
and Software, vol. 13, no. 3, pp. 177-185, Nov. 1990.

[24] J. Offutt, J. Pan, and J.M. Voas, “Procedures for Reducing the Size
of Coverage-Based Test Sets,” Proc. Int’l Conf. Testing Computer
Software, pp. 111-123, June 1995.

[25] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott,
“Automated Oracle Comparators for Testing Web Applications,”
Proc. Int’l Symp. Software Reliability Eng., pp. 253-262, Nov. 2007.

[26] M. Grindal, J. Offutt, and S. Andler, “Combination Testing
Strategies: A Survey,” Software Testing, Verification and Reliability,
vol. 15, pp. 167-199, Mar. 2005.

[27] D.R. Kuhn, D.R. Wallace, and A.M. Gallo, “Software Fault
Interactions and Implications for Software Testing,” IEEE Trans.
Software Eng., vol. 30, no. 6, pp. 418-421, Oct. 2004.

[28] C.J. Colbourn, “Combinatorial Aspects of Covering Arrays,” Le
Matematiche, vol. 58, (Catania), pp. 121-167, 2004.

Renée C. Bryce received the BS and MS
degrees from Rensselaer Polytechnic Institute
and the PhD degree from Arizona State Uni-
versity. She is an assistant professor at Utah
State University. Her research interests include
software testing, particularly combinatorial test-
ing, test suite prioritization, and usability testing.
She has served on the program committee of
the International Conference on Software Test-
ing, Verification and Validation (ICST) and the

International Workshop on TESTing Techniques and Experimentation
Benchmarks for Event-Driven Software (TESTBEDS).

Sreedevi Sampath received the BE degree in
computer science and engineering from Osma-
nia University in 2000 and the MS and PhD
degrees in computer and information sciences
from the University of Delaware in 2002 and
2006, respectively. She is an assistant professor
in the Department of Information Systems at the
University of Maryland, Baltimore County. Her
research interests are in the areas of software
testing, Web applications, and software main-

tenance. She is interested in regression testing and test generation for
Web applications and in exploring uses of Web application usage data.
She has served on the program committees of conferences such as the
International Conference on Software Testing, Verification, and Valida-
tion (ICST), International Conference on Empirical Software Engineering
and Measurement (ESEM), and International Symposium on Software
Reliability Engineering (ISSRE). She is a member of the IEEE Computer
Society.

Atif M. Memon is an associate professor in the
Department of Computer Science at the Uni-
versity of Maryland, College Park. His research
interests include program testing, software en-
gineering, artificial intelligence, plan generation,
reverse engineering, and program structures. He
is the inventor of the GUITAR system (http://
guitar.sourceforge.net/) for automated model-
based GUI testing. He is the founder of the
International Workshop on TESTing Techniques

and Experimentation Benchmarks for Event-Driven Software (TEST-
BEDS). He serves on various editorial boards, including that of the
Journal of Software Testing, Verification and Reliability. He has served
on numerous US National Science Foundation (NSF) panels and
program committees, including the International Conference on Software
Engineering (ICSE), International Symposium on the Foundations of
Software Engineering (FSE), International Conference on Software
Testing, Verification, and Validation (ICST), Web Engineering Track of
the International World Wide Web Conference (WWW), Working
Conference on Reverse Engineering (WCRE), International Conference
on Automated Software Engineering (ASE), and International Con-
ference on Software Maintenance (ICSM). He is currently serving on a
National Academy of Sciences panel as an expert in the area of
computer science and information technology for the Pakistan-US
Science and Technology Cooperative Program sponsored by the United
States Agency for International Development (USAID). In addition to his
research and academic interests, he handcrafts fine wood furniture. He
is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BRYCE ET AL.: DEVELOPING A SINGLE MODEL AND TEST PRIORITIZATION STRATEGIES FOR EVENT-DRIVEN SOFTWARE 17

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

