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M obile devices (tablets, 
smartphones, watches, and 

wearable gadgets) carry a wealth of 
personal and professional data that 
software apps can read, access, and 
modify. Unfortunately, some apps 
are malicious, stealing users’ data 
and transmitting it without their 
knowledge. Given that an estimated 
7.22 billion mobile devices are in 
use—a number rivaling the human 
population1—and that mobile plat-
forms are increasingly reporting mal-
ware,2,3 mobile malware might put 
our privacy at unprecedented risk.

App Isolation  
and Interaction
Today’s mobile OSs are designed 
with a focus on security. Android, 
the most popular mobile OS, iso-
lates each app in an application 
sandbox by leveraging the security 
features of its underlying Linux 
kernel. Each app runs in its own 
memory space, has access to a 
permission -protected file system, 
and has protected CPU cycles. 
Unless the user explicitly bypasses 
it, this sandbox design protects apps 
from interfering or interacting with 
one another and other vital system 
components. For example, a bank-
ing app can’t access files from a mes-
saging app and vice versa.

Although it successfully isolates 
apps from one another, the sand-
box design doesn’t completely pre-
clude malware exploitation. For 
example, an app might intentionally 
or unintentionally leak the device’s 

GPS coordinates by encoding them 
in the URL of an HTTP request. 
Android provides additional mech-
anisms to protect against such 
leaks. Each protected feature of the 
device (such as GPS or the net-
work) requires explicit access per-
mission. Hence, for an app to leak 
GPS location information over the 
network, it must have simultaneous 
permission to ACCESS_FINE_
LOCATION for GPS and access to 
INTERNET for the network. Only 
users can grant these permissions 
when they install the app. However, 
because most users ignore permis-
sion warnings at app install time,4 
they might end up installing over-
privileged apps—those requesting 

more permissions than they need 
to do their job5—some of which 
might be malicious.

It’s not practical to completely 
isolate apps from one another and 
the system. Numerous use cases 
require that apps be allowed (and 
even encouraged) to interact; for 
example, a messaging app might 
need to interact with the device 
contacts app and the camera app so 
users can capture and send pictures 
to their contacts. Moreover, apps 
might invoke parts of other apps to 
enhance the user experience. For 
example, an app that wants to show 
a map as part of its user interface 
doesn’t need to write map-viewing 
code from scratch. Instead, it can 



invoke the default map app’s map 
screen (similar to a subroutine); 
users can then view the map, close 
it, and return control back to the 
calling app. In another example, 
users might want a certain app to be 
invoked for a system event such as a 
text’s arrival. 

To cater to such use cases, 
Android allows apps to interact 
with one another and the system, 
pass data, return results, and share 
resources; apps need to explic-
itly allow for such interaction via 
permissions. However, allowing 

interaction such as communica-
tion via messages (implemented as 
Intent objects in Android) opens 
the door to malware. For example, 
the DroidDreamLight malware used 
receipt of the android.intent.action 
.PHONE_STATE Intent as its 
 trigger—such as when users receive 
a phone call. Once triggered,  this 
malware executes its own code.6

Detecting and Removing 
Mobile Malware
The Internet abounds with advice 
and best practices for avoiding 

mobile malware. Yet malware con-
tinues to proliferate, indicating 
that prevention alone isn’t suffi-
cient. Several techniques can detect 
and remove mobile malware. First, 
basic static techniques check the 
app’s attributes such as file name, 
checksums or hashes, file type, and 
file sizes. Any discrepancies are 
flagged as potential malware. Sec-
ond, static code search techniques, 
such as those used in virus scan-
ners, search for syntactic signatures 
in the app’s code. Using a database 
of code sequence patterns that are 

Covert Communication Channels 

C onsider two apps: FFitt and IIMsgg. FFitt collects and maintains 
fitness data locally on the user’s mobile device. It has permis-

sion to communicate unshared local storage, device location, and 
system settings via Bluetooth to a fitness device. It has no Internet 
access. IIMsgg sends and receives text messages via an Internet-
based messaging service. It has permission to access the Internet, 
contacts, and system settings. Security analysis tools would deem 
both apps safe because there’s no way to leak sensitive fitness and 
location data.

Unbeknownst to these analysis tools is that there’s malicious 
code (a snippet is shown in Figure A) embedded in the apps by 
developers or a hacked integrated development environment1 that 
allows them to communicate via an unconventional channel: the 
device’s screen-off time-out. In Android, this is the time in milli-
seconds before the device goes to sleep or begins to dream after a 
period of inactivity. Apps are allowed to read and modify this value. 
Using this mechanism, the FFitt app covertly sends fitness and 
location data to the IIMsgg app, which then leaks this information 
to a contact via a message. Figure A implements an oversimplified 
but illustrative protocol that allows FFitt to transmit its sensitive 
data as a set of numbers (message in the code). FFitt encodes 
each number as a time-out value and sets it using Settings.
System.putInt (full code not shown due to space); IIMsgg 
reads the value (Settings.System.getInt) and resets it to 
indicate successful receipt. FFitt then “sends” the next number. This 
process continues until all the numbers have been transmitted. This 
example illustrates how two apps’ shared resource (screen time-out) 
might be used as a covert communication channel to effectively 
complete a path from a source of sensitive data (location, fitness 
data) to an external sink. None of today’s malware tools would 
detect this collusion.2
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considered malicious, the tech
nique identifies a program as mal
ware if part of its code matches a 
pattern in the database. Third, static 
code analysis techniques perform 
flow analysis of the app’s code to 
check whether there’s a control flow 
path that allows the app to access 
and leak sensitive information to an 
external entity. 

These static techniques are 
severely limited because today’s 
mobile apps increasingly use dyna
mic runtime mechanisms such as 
virtual function calls, dynamic class 

loading, reflection, multithreading, 
and event handler callbacks. Such 
mechanisms necessitate a fourth 
technique: dynamic analysis. This 
technique manually or automati
cally runs the app and observes its 
runtime behavior; for example, it 
monitors system processes, file
system and registry changes, and 
network activity. Dynamic analy
sis is typically done in a safe (most 
likely emulated) environment in 
which the analyst can run the mal
ware and observe its behavior with
out interference from other apps. 

However, this technique is incom
plete because it’s generally impos
sible to run a software program on 
all its possible inputs. Moreover, 
because dynamic analysis involves 
actually executing the app, the app 
might fool the analysis by “turning 
off ” malicious behavior in certain 
configurations (such as for particu
lar platforms, locations, time, and 
devices). For example, the Den
droid malware used emulation
detection code to successfully evade 
Google Bouncer, an automated app
vetting tool.7

Figure A. A snippet of malicious code embedded in the FFitt and IIMsgg apps that lets them communicate via an unconventional 
channel: the device’s screen-off time-out. FFitt encodes sensitive fitness and location data as time-out values, which IIMsgg then sends 
to a contact via a message.

FFitt

IIMsgg

//List of secret  numbers to send
int message = {14, 63, 75, 381, 127, 141};
j = 0;
//inform reader that writer is alive by setting timeout to 777
Settings.System.putInt(getContentResolver( ), Settings.System.
    SCREEN_OFF_TIMEOUT, 777);
while (j < message.length) {
    //Wait for reader to be ready
    while (timeout !=555)
        timeout = Settings.System.getInt(getContentResolver( ),
                                Settings.System.SCREEN_OFF_TIMEOUT, -1;
        //Reader is ready. Send the number
        Settings.System.putInt(getContentResolver( ), Settings.System.
            SCREEN_OFF_TIMEOUT, message[j]);
        j++; }
//Tell reader that message has ended by setting timeout to 777
Settings.System.putInt(getContentResolver( ), Settings.System.
    SCREEN_OFF_TIMEOUT, 777);

i = 0;
timeout = 0;
//Wait for writer to show up until timeout is 777
while (timeout !=777)
timeout = Settings.System.getInt(getContentResolver( ),
                                 Settings.System.SCREEN_OFF_TIMEOUT, -1);
//Reset variable to enter next loop
timeout = 0;
//Writer is alive. Start reading the secret numbers
while (timeout != 777) {
    //Change timeout to 555; reader ready to receive number
    Settings.System.putInt(getContentResolver( ), Settings.System.
          SCREEN_OFF_TIMEOUT, 555);
    //Wait until writer modifies the timeout
    while (timeout == 555)
        timeout = Settings.System.getInt(getContentResolver( ),
                        Settings.System.SCREEN_OFF_TIMEOUT, -1);
        //Store the secret number if not end of transmission
        if (timeout != 777) {
            secret[i] = timeout;
            i++;
        } }
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App Collusion
Even as the security community is 
starting to understand and detect 
individual malicious apps, a new 
threat is emerging: colluding apps.8 
In collusion attacks, a malicious 
operation is broken into smaller 
parts and distributed across mul-
tiple apps. These apps communi-
cate (or wait for a signal) to play 
their small, individually undetect-
able roles in the operation. Each 
app avoids suspicion by requesting 
the minimum permissions needed 
for its role. For example, when two 
apps collude, the first app might 
read sensitive data and transmit it 
to the second app, which transmits 
it to the outside world. Analyzed 
individually, the apps would be con-
sidered benign because there’s no 
direct path from sensitive data to its 
transmission. In an effort to detect 
colluding apps, recent research has 
extended flow analysis to include 
app message-passing channels.9 
These messages can be monitored 
at runtime to identify app pairs that 
exchange messages and, hence, pos-
sibly collude.10

In the “Covert Communica-
tion Channels” sidebar, the exam-
ple of collusion between the FFitt 
and IIMsgg apps demonstrates 
the serious and complex nature of 
collusion. In 1973, Butler Lamp-
son identified a general form of 
this “confinement problem,”11 
although its application to today’s 
mobile apps gives it new light. Mal-
ware detection tools considering 
each app in isolation have no hope 
of detecting collusion because they 
aren’t designed to analyze sets of 
apps simultaneously. Even if new 
tools could target collusion, they’d 
be limited in at least two ways. 
First, they wouldn’t know which 
apps to analyze together: there 
are millions of apps in the mar-
ketplace, and any two (or more) 
might be malicious and colluding. 
To analyze all possible app pairs, 
the tool would need to analyze N2 

pairs, where N is the number of 
apps in the marketplace. Analyzing 
all possible triples—to detect sets 
of three colluding apps—would 
require N3 runs. Thus, the cost of 
analysis grows exponentially with 
the number of concurrently ana-
lyzed apps. Second, the analysis 
wouldn’t know which communica-
tion channels to intercept.

Apps share dozens of resources, 
each with multiple attribute val-
ues that apps are allowed to read 
or modify (including network sta-
tus, sound volume level, device 
orientation, Bluetooth status, USB 
connection, and altitude). Any of 
these resources might be used—
individually  or together—as covert 
communication channels. In prin-
ciple, a successful analysis tool must 
monitor all possible communica-
tion channels, which means moni-
toring every possible code path 
to every read/write of a shared 
resource’s attribute. This is a practi-
cally impossible task. 

Potential Security 
Improvements 
The problem of colluding mal-
ware hits at the very core of today’s 
mobile OS security model: individ-
ually restricting apps (for example, 
via permissions or sandboxing) is 
sufficient for their safe composi-
tion on a single device. This model 
is inadequate in light of collud-
ing malware. Thus, we must revise 
and enhance the model, which 
will involve an expensive, major 
rewrite of the security components 
of today’s mobile OSs. Detecting 
colluding apps remains an open 
research problem, the solution to 
which eludes both practitioners 
and researchers. We believe that any 
solution must address two funda-
mental challenges: which covert 
channels to examine and which 
sets of apps to analyze together  for 
collusion. 

To identify covert channels, we 
propose the following steps:

 ■ Exhaustively list all possible 
shared resources and their attri-
butes that apps can access and 
modify (originally called “shared-
resource matrix methodology”12).

 ■ Examine the code of all apps in 
today’s mobile marketplace to deter-
mine the shared resources and attri-
butes being accessed in practice.

To identify which sets of apps to 
analyze together for collusion, we 
propose the following approaches:

 ■ Examine app advertisements that 
ask users to download other apps.

 ■ Mine social media postings and 
Internet sites that ask users to 
download apps. For example, 3 
million Minecraft fans—looking  
for cheat sheets and playing 
tips—were tricked into down-
loading more than 30 fake apps.13

T here’s no way to tell how many 
covert-channel colluding apps 

are in the mobile marketplace, already 
stealing our information. Many users 
are unaware that their devices have 
even been compromised. Indeed, if 
rogue nations use malware to spy on 
other countries’ government agents, 
businesses, and diplomats to gain 
strategic advantage, then the results 
of exploits might not translate to a 
traceable outcome (such as a credit 
card charge)—meaning that the 
malware can go undetected for years.

Given that shared resource 
attributes are easily repurposed as 
covert communication channels, 
we believe that we’re on the edge 
of a massive influx of apps using 
such channels to go undetected for 
long periods. It’s not difficult to 
imagine the developers of today’s 
individual malicious apps splitting 
their malware code across multiple 
and seemingly benign apps, using 
a covert channel to communicate 
between the apps, and successfully 
performing malicious operations. If 
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their exploits are discovered, they 
can quickly move the malware to 
other apps, change the covert com-
munication to an alternative shared 
resource, and repenetrate the mar-
ketplace. This practice could con-
tinue indefinitely, until we develop 
better solutions to the problem of 
malware avoidance and detection. 
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