
Editor: Jonathan Margulies, jonathan@qmulos.com

BUILDING SECURITY IN

1540-7993/15/$31.00 © 2015 IEEE Copublished by the IEEE Computer and Reliability Societies November/December 2015 77

Colluding Apps:

Tomorrow’s Mobile Malware Threat

Atif M. Memon | University of Maryland, College Park
Ali Anwar | Montgomery Blair High School

M obile devices (tablets,
smartphones, watches, and

wearable gadgets) carry a wealth of
personal and professional data that
software apps can read, access, and
modify. Unfortunately, some apps
are malicious, stealing users’ data
and transmitting it without their
knowledge. Given that an estimated
7.22 billion mobile devices are in
use—a number rivaling the human
population1—and that mobile plat-
forms are increasingly reporting mal-
ware,2,3 mobile malware might put
our privacy at unprecedented risk.

App Isolation
and Interaction
Today’s mobile OSs are designed
with a focus on security. Android,
the most popular mobile OS, iso-
lates each app in an application
sandbox by leveraging the security
features of its underlying Linux
kernel. Each app runs in its own
memory space, has access to a
permission -protected file system,
and has protected CPU cycles.
Unless the user explicitly bypasses
it, this sandbox design protects apps
from interfering or interacting with
one another and other vital system
components. For example, a bank-
ing app can’t access files from a mes-
saging app and vice versa.

Although it successfully isolates
apps from one another, the sand-
box design doesn’t completely pre-
clude malware exploitation. For
example, an app might intentionally
or unintentionally leak the device’s

GPS coordinates by encoding them
in the URL of an HTTP request.
Android provides additional mech-
anisms to protect against such
leaks. Each protected feature of the
device (such as GPS or the net-
work) requires explicit access per-
mission. Hence, for an app to leak
GPS location information over the
network, it must have simultaneous
permission to ACCESS_FINE_
LOCATION for GPS and access to
INTERNET for the network. Only
users can grant these permissions
when they install the app. However,
because most users ignore permis-
sion warnings at app install time,4
they might end up installing over-
privileged apps—those requesting

more permissions than they need
to do their job5—some of which
might be malicious.

It’s not practical to completely
isolate apps from one another and
the system. Numerous use cases
require that apps be allowed (and
even encouraged) to interact; for
example, a messaging app might
need to interact with the device
contacts app and the camera app so
users can capture and send pictures
to their contacts. Moreover, apps
might invoke parts of other apps to
enhance the user experience. For
example, an app that wants to show
a map as part of its user interface
doesn’t need to write map-viewing
code from scratch. Instead, it can

invoke the default map app’s map
screen (similar to a subroutine);
users can then view the map, close
it, and return control back to the
calling app. In another example,
users might want a certain app to be
invoked for a system event such as a
text’s arrival.

To cater to such use cases,
Android allows apps to interact
with one another and the system,
pass data, return results, and share
resources; apps need to explic-
itly allow for such interaction via
permissions. However, allowing

interaction such as communica-
tion via messages (implemented as
Intent objects in Android) opens
the door to malware. For example,
the DroidDreamLight malware used
receipt of the android.intent.action
.PHONE_STATE Intent as its
 trigger—such as when users receive
a phone call. Once triggered, this
malware executes its own code.6

Detecting and Removing
Mobile Malware
The Internet abounds with advice
and best practices for avoiding

mobile malware. Yet malware con-
tinues to proliferate, indicating
that prevention alone isn’t suffi-
cient. Several techniques can detect
and remove mobile malware. First,
basic static techniques check the
app’s attributes such as file name,
checksums or hashes, file type, and
file sizes. Any discrepancies are
flagged as potential malware. Sec-
ond, static code search techniques,
such as those used in virus scan-
ners, search for syntactic signatures
in the app’s code. Using a database
of code sequence patterns that are

Covert Communication Channels

C onsider two apps: FFitt and IIMsgg. FFitt collects and maintains
fitness data locally on the user’s mobile device. It has permis-

sion to communicate unshared local storage, device location, and
system settings via Bluetooth to a fitness device. It has no Internet
access. IIMsgg sends and receives text messages via an Internet-
based messaging service. It has permission to access the Internet,
contacts, and system settings. Security analysis tools would deem
both apps safe because there’s no way to leak sensitive fitness and
location data.

Unbeknownst to these analysis tools is that there’s malicious
code (a snippet is shown in Figure A) embedded in the apps by
developers or a hacked integrated development environment1 that
allows them to communicate via an unconventional channel: the
device’s screen-off time-out. In Android, this is the time in milli-
seconds before the device goes to sleep or begins to dream after a
period of inactivity. Apps are allowed to read and modify this value.
Using this mechanism, the FFitt app covertly sends fitness and
location data to the IIMsgg app, which then leaks this information
to a contact via a message. Figure A implements an oversimplified
but illustrative protocol that allows FFitt to transmit its sensitive
data as a set of numbers (message in the code). FFitt encodes
each number as a time-out value and sets it using Settings.
System.putInt (full code not shown due to space); IIMsgg
reads the value (Settings.System.getInt) and resets it to
indicate successful receipt. FFitt then “sends” the next number. This
process continues until all the numbers have been transmitted. This
example illustrates how two apps’ shared resource (screen time-out)
might be used as a covert communication channel to effectively
complete a path from a source of sensitive data (location, fitness
data) to an external sink. None of today’s malware tools would
detect this collusion.2

References
1. “Novel Malware XCodeGhost Modifies XCode, Infects Apple

iOS Apps and Hits App Store,” Palo Alto Networks, 17 Sept.
2015; http://researchcenter.paloaltonetworks.com/2015/09
/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios
-apps-and-hits-app-store.

2. D.J.J. Sufatrio et al., “Securing Android: A Survey, Taxonomy,
and Challenges,” ACM Computing Surveys, vol. 47, no. 4, 2015,
pp. 58:1–58:45.

78 IEEE Security & Privacy November/December 2015

BUILDING SECURITY IN

considered malicious, the tech
nique identifies a program as mal
ware if part of its code matches a
pattern in the database. Third, static
code analysis techniques perform
flow analysis of the app’s code to
check whether there’s a control flow
path that allows the app to access
and leak sensitive information to an
external entity.

These static techniques are
severely limited because today’s
mobile apps increasingly use dyna
mic runtime mechanisms such as
virtual function calls, dynamic class

loading, reflection, multithreading,
and event handler callbacks. Such
mechanisms necessitate a fourth
technique: dynamic analysis. This
technique manually or automati
cally runs the app and observes its
runtime behavior; for example, it
monitors system processes, file
system and registry changes, and
network activity. Dynamic analy
sis is typically done in a safe (most
likely emulated) environment in
which the analyst can run the mal
ware and observe its behavior with
out interference from other apps.

However, this technique is incom
plete because it’s generally impos
sible to run a software program on
all its possible inputs. Moreover,
because dynamic analysis involves
actually executing the app, the app
might fool the analysis by “turning
off ” malicious behavior in certain
configurations (such as for particu
lar platforms, locations, time, and
devices). For example, the Den
droid malware used emulation
detection code to successfully evade
Google Bouncer, an automated app
vetting tool.7

Figure A. A snippet of malicious code embedded in the FFitt and IIMsgg apps that lets them communicate via an unconventional
channel: the device’s screen-off time-out. FFitt encodes sensitive fitness and location data as time-out values, which IIMsgg then sends
to a contact via a message.

FFitt

IIMsgg

//List of secret numbers to send
int message = {14, 63, 75, 381, 127, 141};
j = 0;
//inform reader that writer is alive by setting timeout to 777
Settings.System.putInt(getContentResolver(), Settings.System.
 SCREEN_OFF_TIMEOUT, 777);
while (j < message.length) {
 //Wait for reader to be ready
 while (timeout !=555)
 timeout = Settings.System.getInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT, -1;
 //Reader is ready. Send the number
 Settings.System.putInt(getContentResolver(), Settings.System.
 SCREEN_OFF_TIMEOUT, message[j]);
 j++; }
//Tell reader that message has ended by setting timeout to 777
Settings.System.putInt(getContentResolver(), Settings.System.
 SCREEN_OFF_TIMEOUT, 777);

i = 0;
timeout = 0;
//Wait for writer to show up until timeout is 777
while (timeout !=777)
timeout = Settings.System.getInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT, -1);
//Reset variable to enter next loop
timeout = 0;
//Writer is alive. Start reading the secret numbers
while (timeout != 777) {
 //Change timeout to 555; reader ready to receive number
 Settings.System.putInt(getContentResolver(), Settings.System.
 SCREEN_OFF_TIMEOUT, 555);
 //Wait until writer modifies the timeout
 while (timeout == 555)
 timeout = Settings.System.getInt(getContentResolver(),
 Settings.System.SCREEN_OFF_TIMEOUT, -1);
 //Store the secret number if not end of transmission
 if (timeout != 777) {
 secret[i] = timeout;
 i++;
 } }

www.computer.org/security 79

App Collusion
Even as the security community is
starting to understand and detect
individual malicious apps, a new
threat is emerging: colluding apps.8
In collusion attacks, a malicious
operation is broken into smaller
parts and distributed across mul-
tiple apps. These apps communi-
cate (or wait for a signal) to play
their small, individually undetect-
able roles in the operation. Each
app avoids suspicion by requesting
the minimum permissions needed
for its role. For example, when two
apps collude, the first app might
read sensitive data and transmit it
to the second app, which transmits
it to the outside world. Analyzed
individually, the apps would be con-
sidered benign because there’s no
direct path from sensitive data to its
transmission. In an effort to detect
colluding apps, recent research has
extended flow analysis to include
app message-passing channels.9
These messages can be monitored
at runtime to identify app pairs that
exchange messages and, hence, pos-
sibly collude.10

In the “Covert Communica-
tion Channels” sidebar, the exam-
ple of collusion between the FFitt
and IIMsgg apps demonstrates
the serious and complex nature of
collusion. In 1973, Butler Lamp-
son identified a general form of
this “confinement problem,”11
although its application to today’s
mobile apps gives it new light. Mal-
ware detection tools considering
each app in isolation have no hope
of detecting collusion because they
aren’t designed to analyze sets of
apps simultaneously. Even if new
tools could target collusion, they’d
be limited in at least two ways.
First, they wouldn’t know which
apps to analyze together: there
are millions of apps in the mar-
ketplace, and any two (or more)
might be malicious and colluding.
To analyze all possible app pairs,
the tool would need to analyze N2

pairs, where N is the number of
apps in the marketplace. Analyzing
all possible triples—to detect sets
of three colluding apps—would
require N3 runs. Thus, the cost of
analysis grows exponentially with
the number of concurrently ana-
lyzed apps. Second, the analysis
wouldn’t know which communica-
tion channels to intercept.

Apps share dozens of resources,
each with multiple attribute val-
ues that apps are allowed to read
or modify (including network sta-
tus, sound volume level, device
orientation, Bluetooth status, USB
connection, and altitude). Any of
these resources might be used—
individually or together—as covert
communication channels. In prin-
ciple, a successful analysis tool must
monitor all possible communica-
tion channels, which means moni-
toring every possible code path
to every read/write of a shared
resource’s attribute. This is a practi-
cally impossible task.

Potential Security
Improvements
The problem of colluding mal-
ware hits at the very core of today’s
mobile OS security model: individ-
ually restricting apps (for example,
via permissions or sandboxing) is
sufficient for their safe composi-
tion on a single device. This model
is inadequate in light of collud-
ing malware. Thus, we must revise
and enhance the model, which
will involve an expensive, major
rewrite of the security components
of today’s mobile OSs. Detecting
colluding apps remains an open
research problem, the solution to
which eludes both practitioners
and researchers. We believe that any
solution must address two funda-
mental challenges: which covert
channels to examine and which
sets of apps to analyze together for
collusion.

To identify covert channels, we
propose the following steps:

 ■ Exhaustively list all possible
shared resources and their attri-
butes that apps can access and
modify (originally called “shared-
resource matrix methodology”12).

 ■ Examine the code of all apps in
today’s mobile marketplace to deter-
mine the shared resources and attri-
butes being accessed in practice.

To identify which sets of apps to
analyze together for collusion, we
propose the following approaches:

 ■ Examine app advertisements that
ask users to download other apps.

 ■ Mine social media postings and
Internet sites that ask users to
download apps. For example, 3
million Minecraft fans—looking
for cheat sheets and playing
tips—were tricked into down-
loading more than 30 fake apps.13

T here’s no way to tell how many
covert-channel colluding apps

are in the mobile marketplace, already
stealing our information. Many users
are unaware that their devices have
even been compromised. Indeed, if
rogue nations use malware to spy on
other countries’ government agents,
businesses, and diplomats to gain
strategic advantage, then the results
of exploits might not translate to a
traceable outcome (such as a credit
card charge)—meaning that the
malware can go undetected for years.

Given that shared resource
attributes are easily repurposed as
covert communication channels,
we believe that we’re on the edge
of a massive influx of apps using
such channels to go undetected for
long periods. It’s not difficult to
imagine the developers of today’s
individual malicious apps splitting
their malware code across multiple
and seemingly benign apps, using
a covert channel to communicate
between the apps, and successfully
performing malicious operations. If

80 IEEE Security & Privacy November/December 2015

BUILDING SECURITY IN

their exploits are discovered, they
can quickly move the malware to
other apps, change the covert com-
munication to an alternative shared
resource, and repenetrate the mar-
ketplace. This practice could con-
tinue indefinitely, until we develop
better solutions to the problem of
malware avoidance and detection.

References
1. “There Are Officially More

Mobile Devices than People in
the World,” Independent, 7 Oct.
2014; www.independent.co.uk
/ l i f e - s t y l e / gad ge t s - a n d - te c h
/news/there-are-officially-more
-mobile-devices-than-people-in
-the-world-9780518.html.

2. “Protect Your Android Device from
Malware,” CNET, 25 June 2014;
www.cnet.com/how-to/protect
-your-android-device-from-malware.

3. “McAfee Labs Threats Report
May 2015,” McAfee, May 2015;
www.mcafee.com/us/resources
/ rep o r t s / r p - q u ar ter l y- t h reat
-q1-2015.pdf.

4. A. Porter Felt et al., “Android Per-
missions: User Attention, Compre-
hension, and Behavior,” Proc. 8th
Symp. Usable Privacy and Security
(SOUPS 12), 2012, pp. 3:1–3:14.

5. X. Wei et al., “Permission Evolution
in the Android Ecosystem,” Proc.
28th Ann. Computer Security Appli-
cations Conf. (ACSAC 12), 2012,
pp. 31–40.

6. M. Balanza et al., “DroidDream-
Light Lurks behind Legitimate
Android Apps,” Proc. 6th Int’l Conf.
Malicious and Unwanted Software
(MALWARE 11), 2011, pp. 73–78.

7. “Dendroid Spying RAT Malware
Found on Google Play,” Help
Net Security, 3 July 2014; www
.net-security.org/malware_news
.php?id=2726.

8. C. Marforio et al., “Analysis of the
Communication between Col-
luding Applications on Modern
Smartphones,” Proc. 28th Annual
Computer Security Applications Conf.
(ACSAC 12), 2012, pp. 51–60.

9. D. Sbîrlea et al., “Automatic Detec-
tion of Inter-application Permission
Leaks in Android Applications,”
IBM J. Research and Development,
vol. 57, no. 6, 2013, pp. 2:10– 2:10.

10. K.O. Elish, D. Yao, and B.G, Ryder,
“On the Need of Precise Inter-app
ICC Classification for Detecting
Android Malware Collusions,” Proc.
IEEE Mobile Security Technologies
(MoST)/IEEE Symp. Security and
Privacy (SP), 2015.

11. B.W. Lampson, “A Note on the Con-
finement Problem,” Comm. ACM,
vol. 16, no. 10, 1973, pp. 613–615.

12. R.A. Kemmerer, “Shared Resource
Matrix Methodology: An Approach
to Identifying Storage and Tim-
ing Channels,” ACM Trans. Com-
puter Systems, vol. 1, no. 3, 1983,
pp. 256–277.

13. “Minecraft Cheats Scareware Apps
Affect 600,000 Users,” WCCF Tech,
May 2015; http://wccftech.com
/minecraft-cheats-scareware-apps
-affect-600000-users.

Atif M. Memon is a professor in the
Department of Computer Science
and the Institute for Advanced
Computer Studies at the Univer-
sity of Maryland, College Park.
Contact him at atif@cs.umd.edu.

Ali Anwar is a student at Montgom-
ery Blair High School. Contact
him at alia7477@gmail.com.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

For more information
on paper submission,
featured articles, call-for-
papers, and subscription
links visit:

www.computer.org/tmscs

SUBSCRIBE
AND SUBMIT

NEW
IN 2015

IEEE TRANSACTIONS ON

MULTI-SCALE
COMPUTING
SYSTEMS

TMSCS is financially cosponsored
by IEEE Computer Society, IEEE

Communications Society, and
IEEE Nanotechnology Council

TMSCS is technically cosponsored
by IEEE Council on Electronic

Design Automation

@s e cur it ypr ivac y

FOLLOW US

www.computer.org/security 81

