
Disqover: Debugging via Code Sequence Covers

Ethar Elsaka and Atif Memon
Department of Computer Science

University of Maryland

College Park, MD, USA

Email: {ethar, atif}@cs.umd.edu

Abstract—Automated model-based test generation has seen an
undeniable trend towards obtaining large numbers of test cases.
However, the full benefits of this trend have not yet percolated to
downstream activities, such as debugging. We present Disqover
for automated software debugging based on code sequence
covers that leverages execution traces, or alternatively, sequence
covers of large numbers of failing test cases to quickly identify
causes of test failures, thereby aiding debugging. We develop
a new algorithm that efficiently extracts commonalities between
sequence covers in the form of ordered subsequences and values of
variables contained in these subsequences that contribute to each
failure. The results of our experimental evaluation suggest that
users of Disqover need only 30% of the time needed to identify
faults compared to the baseline in a user study. Furthermore, we
show that the number of inspected statements using our approach
is smaller than that of other state-of-the-art systems by multiple
orders of magnitude. Additionally, we show that increasing the
number and diversity of test cases improves our results by further
decreasing the length of output subsequences to be examined.

I. INTRODUCTION

Software debugging is one of the main activities in the soft-
ware development process. It is used extensively by software
developers to localize faults. Manual debugging is by far the
most popular, but difficult and time consuming approach [25].
In order for the developer to manually debug an application
that contains an error, first she has to understand the way the
application works then determine the root cause of the error by
backtracking, navigating through the code dependencies, pos-
sibly running the code multiple times, and parsing the program
logs in order to collect clues about the reasons of the error, so
that the developer can finally identify the source of the error
and fix it. The need to understand program functionality has
become central to debugging, as there are many programmers
who participate in the development phase. A developer who
works on fixing a specific bug may not necessarily have written
the code, and thus, has to understand unfamiliar program
parts. This task takes a considerable amount of effort and
time [21]. Even after the developer becomes familiar with
the code, figuring out the statements in the code that that
produce the error is non-trivial. The developer has to envision
multiple scenarios (by exploring different possibilities of the
input space) to check all the potentially error-causing execution
paths. There has been some work on automating this step in
the literature [13]. The final step, which is determining the
source of the error (fault localization) is the hardest aspect of
debugging [21] because it requires analyzing hundreds of lines
of code to determine the root cause of the error.

Although to date software debugging remains largely man-
ual, it is not the case with software testing. Advances in

software test generation have yielded new techniques that
can automatically produce a large numbers of test cases,
and execute them to validate the correctness of the program.
There are different paradigms in the literature upon which
automatic test case generation techniques are based, such as
behavioral and interactional UML models [10], event flow
graphs [19], event interaction graphs [28], feature models [24],
and mathematical models [12].

In this paper, we leverage the execution results of such
large numbers of test cases to aid in the downstream activity
of debugging, i.e., to help the developer find the source of
an error. We analyze the sequences of statements executed by
failing test cases (sequence covers 1), and output a subsequence
of statements (with dynamically-observed values of variables)
that is common between them. The developer uses our output
to find the exact root cause of the error. Finding error-causing
code using our output in the form of code subsequences is
easier and more convenient for the developer than inspecting
the code itself. Firstly, code subsequences can be examined
in linear order. Developers do not need to track code depen-
dencies and consider different ways the code can be executed.
Second, code subsequences are derived from execution traces,
and hence capture runtime information as well, such as the
code execution order, and variable values at runtime. This
allows developers to relate the variable values to the error.

Finding commonalities between code sequence covers
corresponds to the multiple common subsequences problem,
which is NP-hard [26]. This problem is also related to the
multiple sequence alignment problem that is well studied in the
computational biology literature [17], [9]. Most approaches for
finding multiple common subsequences focus only on finding
the longest common subsequence, and hence are not appli-
cable to our case as the common subsequence of statements
that contains the faulty path is not necessarily the longest.
Furthermore, approaches for multiple sequence alignment are
mostly iterative, i.e., they only align one sequence at a time
with the current set of sequences, and hence are dependent on
the evaluation order, and do not necessarily result in optimal
alignment. Additionally, multiple sequence alignment allows
mismatches as a compromise to get longer subsequences,
which is not allowed in our case. Therefore, we propose a new
efficient algorithm for finding common subsequences between
code sequence covers, and propose a new way to represent
those common subsequences as a directed acyclic graph,
known as the common subsequences graph. Furthermore, we
propose various abstraction techniques to make the input code

1In the rest of the paper, we use execution traces and sequence covers
alternatively.

85978-1-5090-0406-5/15/$31.00 ©2015 IEEE978-1-5090-1944-1/15/$31.00 ©2015 IEEE

sequence covers more concise and developer-friendly. In our
experimental evaluation, we show that using our algorithm,
along with the abstraction techniques, we efficiently construct
the common subsequences graph in less than a second for
multiple sequences with average length of 10,000 statements.

II. RELATED WORK

Weiser [27] propose program slicing as a method for aiding
debugging. Program slicing identifies all the statements that
can affect a variable in a program either statically [27], or
dynamically [31]. Dynamic slicing and its variations [11],
[14], [32] potentially reduces the size of the slices. How-
ever, the slices are fairly large making them undesirable for
debugging [30]. Furthermore, the developer still has to run
the reduced program (slice) again and manually detect the
source of the error. On the contrary, our approach outputs a
subsequence of statements (and variable values) covered by the
failed test cases, through which the developer can backtrace to
quickly find the root cause.

Two notable techniques (regression containment [22] and
Delta debugging [29]) rely on working and non-working
versions of the program under test. Regression containment
isolates changes that cause the error between the working and
non-working (that are not passing the test) program versions.
Delta debugging [29] iteratively binary-partitions the set of dif-
ferences between the working and non-working versions until
it obtains the minimal failure-inducing set. Other variations of
Delta Debugging (DD) have been proposed to overcome its
limitations such as Hierarchical Delta Debugging (HDD) [20]
and Iterative Delta Debugging (IDD)[7]. As can be imagined,
finding working and non-working versions of the program
can be challenging. Also, extracting the changes between two
program versions and applying parts of these changes to the
working version can be very time consuming because of the
execution time required to run multiple combinations of these
changes. The runs cannot be performed in parallel because
a run at one iteration depends on the output of the run at
the previous iteration. Finally, applying part of the changes to
the working version may not always result in an executable
version. Conversely, our approach just relies on the current
version of the program. Also, it does not involve changing the
source code or generating different versions of the program.

Several other automated debugging techniques use state-
ment coverage [16], their frequencies [33], predicate values
[18], program states [30], and combinations of program el-
ements [8]. The problem with these techniques is that the
number of statements they identify for inspection can be
very large. Furthermore, they do not output subsequences of
statements, only sets of statements, which the developer has
to inspect and reason about individually.

III. MODELING DISQOVER

We present our approach in this section. We begin by
stating some basic definitions, then discuss how we efficiently
extract commonalities between test case execution traces in
detail in the following subsections.

Definition: (Test case) Given a software S, a test case is
a set of inputs i1, i2, . . . in that satisfy a set of preconditions,
along with a set of expected outputs o1, o2, . . . om that satisfy a

set of postconditions. When i1, i2, . . . in are given to software
S, S should produce o1, o2, . . . om in order for the test case to
pass.

Disqover is based on the existence of a large number of test
cases. Running a number of test cases causes some of them to
pass (produce a correct output) and the others to fail (produce
a wrong output, throw an error or crash).

Definition: (Passing/failing test case) Given a software S
and a test case t, t passes if S runs t to completion correctly,
producing the expected output, and t fails if t causes S to
throw an error or produce an unexpected output during the
execution of t.

In our approach, we group the failing test cases that fail
for the same reason (i.e. that throw the same type of error or
the unexpected output from the same statement) together under
the same test cases group. Test case groups enable debugging
applications that have multiple errors at the same time.

Definition: (Test cases group) A test cases group is a
set that contains one or more test cases that fail at the same
location, producing the same type of error or unexpected
output.

Furthermore, we define two types of statements that are
essential for such type of automated debugging, failure state-
ment, and root cause subsequence.

Definition: (Failure statement) is the statement where the
unexpected output is detected. The failure can also take the
form of an application error.

We note that neither the failure statement nor its function
call stack trace are necessarily responsible for the unexpected
output, and hence, the need for identifying the root cause
becomes apparent, which is the bulk of the software debugging
process, and the objective of Disqover.

Definition: (Root cause subsequence) is a subsequence
of statements that is the main reason for the unexpected
output. This subsequence may consist of a single or multiple
statements. Fixing this subsequence prevents the unexpected
output from being produced.

Since running a test case causes specific parts of the source
code to be executed, if a test case fails, the root cause of the
failure must be in the statements that are executed during that
run. Furthermore, in the vast majority of scenarios, when test
cases fail at the same location on the same error or unexpected
output, this indicates that their execution traces share the root
cause as well.2 Therefore, by increasing the number of test
cases which fail for the same reason (i.e., from the test case
group), the subsequence possibly responsible for the error is
narrowed down, by eliminating irrelevant statements that are
not shared between the execution traces of all the test cases.

A straightforward way for implementing the above obser-
vation is by finding a simple set intersection of the statements
shared by test cases in a group (code coverage intersection).
This approach is inadequate, as it returns an unordered set of
statement with no relationship between them.

2Although this is true for the vast majority of errors, simple extensions to
our techniques can relax this assumption.

86

Therefore, the basic idea of our approach is to extract the
common subsequence among the failing test cases sequence
covers. The root cause can be found in this common subse-
quence, and can be reached by tracing back from the failure
statement. Using sequence covers as opposed to code coverage
intersection has a number of advantages. Tracing the common
subsequence back starting from the failure statement makes the
debugging process as simple as a linear scan, as opposed to
exploring the highly interconnected program dependency graph
to trace back an application error. Furthermore, exploiting
the fact that the program statements execute in sequence can
reduce the number of statements reported, because in this
case, we will not only consider the statements that are just
shared between the sequences, but also consider that these
statements must be executed in the same order. The existence
of this additional restriction further decreases the number of
the resulting statements that the developer needs to consider
at a time.

Below we present a motivating application for using se-
quence covers for automated debugging, as opposed to using
code coverage intersection, but first, we define both terms.

Definition: (Test case code coverage C(t)) Given a test
case t, the test case code coverage C(t) is a set of statements
that are excuted during the execution of t.

Definition: (Test case sequence cover S(t)) Given a test
case t, a sequence cover, S(t), is the ordered list of statements
that are executed during the execution of t according to their
execution order.

A. Motivating Example

Consider the code snippet listed in Figure 1, which has
the statements s1, s2, s3, s4 and s5 (we exclude the if and the
for statements from the sequence for simplicity). It can also
execute two test cases t1 and t2, which are from the same
test case group. t1 executes the statements s1, s3, s4, s5 in the
following order s1 → s3 → s4 → s5 and t2 executes the
statements s2, s3, s4, s5 in the following order s2 → s5 →
s3 → s4. The two test cases execute each statement only once.
In this case, the code coverage set C(t1) is {s1, s3, s4, s5}
and the code coverage set C(t2) is {s2, s3, s4, s5}. Therefore,
the statements that result from applying the code-coverage
intersection technique are (s3, s4, s5). On the other hand, if we
utilize the order of statement execution, we can tell that either
the subsequence s3, s4 or the subsequence s5 is responsible of
the error because in the first test case s5 appears before s3, s4
and in the second it appears after them. Therefore, s5 can be
inspected in isolation of s3 and s4 by the developer, which
minimizes the number of statements to consider at a time,
and minimizes the number of interactions and dependencies
that the developer needs to keep track of while tracing back
the statements. In this case, we generate the execution trace of
each test case as a sequence of statements, and get the common
ordered statements between all the test cases.

In the previous example, the sequence cover S(t1) contains
the ordered list (s1, s3, s4, s5) and the sequence cover S(t2)
contains the ordered list (s2, s5, s3, s4). Using our sequence
coverage intersection technique, the statements that result from
applying it are (s3, s4) or (s5), i.e., each subsequence has a

if (t1) s1;
if (t2) s2;
for (i in 0,1) {
if(t1 && i=0 || t2 && i=1) {
s3; s4; }

if(t1 && i=1 || t2 && i=0) s5;
}

Fig. 1: Example program

S(t1) = a b a c
S(t2) = c a b a
S(t3) = a b d a

Fig. 2: Sequence covers of three test cases

smaller number of statements than those in the unordered list
of code coverage intersection.

B. Common Subsequence Coverage Algorithm

In this section, we discuss our algorithm for finding code
sequence coverage intersection in detail. The goal of our
algorithm is to detect subsequences of statements that appear
in all the test cases in the same order, and at the same time,
not necessarily consecutively, i.e., they can have arbitrary
gaps between them. For example, assuming we obtain the
three execution traces in Figure 2, we want the algorithm to
detect that the subsequence (a, b, a) is the one that is common
between them. Applying the Longest Common Subsequences,
LCS, algorithm is not suitable in our case as it outputs the
longest common subsequence only, which may not contain
the root cause of the error, as it is just one of the possible
subsequences among all the common subsequences. In this
section we discuss our approach for finding all the common
subsequences, and in Section III-C, we show how to rank
the subsequences according to their importance so that we
output the subsequence with the highest rank according to that
criteria.

To enumerate all the possible common subsequences be-
tween a set of sequences (potentially a large number of them,
since we may have the output of the execution of a large
number of test cases over large programs), we follow the steps
outlined below.

1) Applying Code Coverage Intersection: As an initial step,
we intersect all the code coverage sets of the test cases to get
the set of statements that are common between them. Clearly,
the common subsequences must be composed of statements in
that intersection only. We denote this as C = C(t1)∩C(t2)...

2) Excluding Initialization Code: To minimize the number
of statements in the intersection, we remove the initializa-
tion code, which is the code responsible of starting up the
application. Since the initialization code is shared by all the
test cases, the intersection of their code coverage will contain
these initialization statements, which are not necessarily related
to the error. To help reducing the code coverage intersection
size, we assume that the initialization code is bug-free, and
calculate the intersection between the test cases by excluding
the initialization code. C = C − C0, where C0, is the
application initialization code.

87

3) Constructing the Common Subsequences Graph: The
problem of generating all common subsequences among a set
of sequences is difficult because there is an exponential number
of combinations that can be considered in order to construct the
common subsequence. If a statement appears multiple times in
each sequence, say n1, . . . , nm times, then there are O(

∏
i ni)

ways to construct smaller subsequences recursively out of the
original ones to continue finding the common subsequences
among them and so on. In this subsection, we discuss how to
model that problem using our common subsequences graph,
and how to compute the the common subsequences efficiently
by only considering meaningful combinations, because not all
of the possible combinations can make it to the final common
subsequences.

Since each statement can occur multiple times in each
sequence cover, we define a particular combination of occur-
rences of a statement in all sequence covers to be an instance
of that statement as it can possibly contribute to a common
subsequence. For example, in Figure 2, b has only one possible
instance of occurrence: (2, 3, 2), which means that b occurs at
position 2 in S(t1), position 3 at S(t2), and position 2 at
S(t3). However, a has eight possible instances, since it occurs
in S(t1) at positions 1, 3, in S(t2) at positions 2, 4, and in
S(t3) at positions 1, 4. Therefore, a’s possible combinations
are (1, 2, 1), (1, 2, 4), (1, 4, 1), . . . etc.

Now that we have defined instances of occurrences for each
statement, a common subsequence is a sequence of instances
(inst1, inst2, .., instn) such that all positions in insti are
strictly less than their corresponding positions in insti+1, for
all 1 ≤ i < n.

Definition: (Operator <) Given two instances insti and
instj , insti < instj if and only if all the positions in insti
are less than their corresponding positions in instj .

Likewise, we define > over pairs of instances, insti and
instj using their corresponding positions.

Example: consider the instance of a’s occurrence inst1 =
(1, 2, 4) and the instance of b’s occurrence inst2 = (2, 3, 2).
A common subsequence cannot consist of inst1 followed by
inst2, because inst1 �< inst2, because at the third place, a
occurs at position 4 while b occurs at position 2, which means
that a precedes b in all the test case sequences, but not in
the third, where b precedes a, which means that (inst1, inst2)
is not a valid common subsequence. On the other hand, if
we consider inst1 as the instance (1, 2, 1), then (inst1, inst2)
becomes a valid common subsequence, because inst1 < inst2,
where for every position in inst1, its corresponding position
in inst2 is strictly greater than it, which means that a precedes
b in all test cases.

The naive way for generating the common subsequences
using the instances is by generating all possible instances
(inst1, inst2, . . .) for all statements and finding which of
them follows the others, i.e., insti < instj . To make this
process more scalable, we propose an algorithm that generates
the instances on demand, and avoids constructing redundant
subsequences during the common subsequence building time.
The algorithm is based on constructing a graph of instances,
where nodes of the graph represent instances, and an edge from
instance insti to instj means that insti > instj and there is
no other instk such that insti > instk and instk > instj , i.e.,

there is no intermediate instance that can appear in the common
subsequence between insti and instj , and hence, edges of the
graph are constructed between nodes that represent instances
that directly follow each other.

In order to generate the instances on demand, we only
create the least instance for each statement in the code cover-
age intersection, generate its edges, and recurse. For example,
considering the sequence coverage in Figure 2, we start by
the least instance for a : (1, 2, 1), and the least instance for
b : (2, 3, 2) and add them to a stack. We then pick (1, 2, 1)
from the stack, generate its edges by choosing from the next
least possible instances relative to it, and add those next least
possible instances back to the stack if they do not already exist
or if they have not been already processed. To generate the
next least possible instances efficiently, we use binary search
by constructing an array pos[s, ti] storing the positions of each
statement s in each sequence cover of ti in sorted order. Given
an instance (p1, . . . , pm) of a statement s′, we find the next
least position to pi in the sequence of ti by searching for
pi in that sequence. We continue consuming nodes from the
stack until it becomes empty, the point at which we have
generated a precedence graph on the instances, where any path
in that graph represents a common subsequence between the
execution traces of all test cases.

Definition: (Common subsequences graph) a common
subsequences graph is a directed acyclic graph whose nodes
represent instances of occurrence of statements in the sequence
cover of all test cases, and its edges represent the direct <
relationship between those instances. Any path in this graph
represents a common subsequence of the execution traces of
all test cases.

4) Extracting common subsequences: To generate the com-
mon subsequences between the execution traces of all test
cases, we start from the node representing the failure statement
in the common subsequences graph, and traverse its neighbors,
generating all possible paths. Each of these paths is a common
subsequence.

C. Algorithm Optimizations

We enhance our algorithm by 1) abstracting the test cases,
and 2) extracting the most important subsequences only. Test
case abstractions transform the sequence covers to more ab-
stract, shorter versions. Most important common subsequence
extraction selects a subsequence from the common subse-
quences graph that is most likely to contain the root cause.

1) Test case abstraction: We achieve test case abstraction
using two techniques: loop-based abstraction, and block-based
abstraction. In loop-based abstraction, we compress each loop
in each test case sequence to appear as one iteration. We
identify loops as any subsequence of program statements in the
execution trace that is consecutively repeated more than once.
In block-based abstraction, we compress program statements
always appear consecutively in all test case sequences and
substitute them with one node in the common subsequence
graph. We use a variant of the suffix tree algorithm to discover
those patterns and substitute them.

2) Extracting the most important common subsequences:
Reporting all possible common subsequences to the developers

88

App LOC # Classes # Methods

ArgoUML 152513 1787 13117

Crossword Sage 3072 34 238

Buddi 20922 257 1580

Freemind 7702 136 788

TABLE I: Application code complexity metrics

may be impractical, especially, if one subsequence can point
out where the root cause of the error is. Furthermore, traversing
all the paths starting from the failure statement node in large
graphs is time consuming and results in a large number of
paths, while we are only interested in just one sequence to
present to the user, which is likely to contain the trace back
from the failure statement to the root cause. Therefore, in
our algorithm instead of traversing all paths, we assign scores
to the nodes in the graph according to their degrees,3 which
indicate the likelihood of those nodes participating in faulty
sequences, and then generate the path that passes along the
nodes with the highest scores.

IV. EXPERIMENTAL EVALUATION

To evaluate Disqover, we perform a set of experiments that
answer the following research questions:

RQ1 Does Disqover help developers find root causes of
failures more effectively?

RQ2 Does diversifying the input test cases or increasing
their number reduces the number of statements in the common
subsequence?

RQ3 Do our algorithms lead to a more efficient evaluation
of the common subsequence?

A. Subject Applications and Faults

We evaluate Disqover using 4 open source Java GUI
applications: ArgoUML [1], Crossword Sage[3], Buddi [2],
and Freemind [4]. Table I lists some code complexity metrics
of the subject applications such as the number of lines of
code (LOC) in each application, the number of classes, and
the number of methods. As we can see, the number of lines
of code of those applications vary from thousands of lines of
code (e.g., Crossword Sage) to hundreds of thousands of lines
of code (e.g., ArgoUML).

We use both seeded and real faults to evaluate our ap-
proach. We summarize the faults used with each of the appli-
cations in Table III. Although all the faults are exception-type
faults, the same approach can be used for programs producing
unexpected results as long as failing test cases are available
for those unexpected results.

We implement a tool as an Eclipse plugin to enable
developers to use our approach. We use GUITAR [23] tools to
automatically generate the test cases and replay them. We use
Cobertura [6] code coverage tool to obtain the code coverage
of each test case. We modify it so that it outputs code sequence
covers instead of statement coverage reports. We use the Java
Debugger (JDB) [5] command line debugging tool to automate
extracting the variable values.

3We study other metrics in future work.

Fault Event Exception Seeded
or
real?

ArgoUML Export All Graphics FileNotFoundException real

Crosswordsage1 Load crossword To Edit NullPointerException seeded

Crosswordsage2 New crosswords NumberFormatException seeded

Buddi Save As FileNotFoundException real

Freemind1 Save As FileNotFoundException real

Freemind2 Open FileNotFoundException real

Freemind3 Remove Node NullPointerException seeded

TABLE II: Application faults

B. Experiments

In this subsection, we describe the experiments performed
to evaluate Disqover. We perform experiments to measure the
impact of using our approach by real developers to debug the
faults in the subject applications, in terms of both the saving
in debugging time and the number of statements to examine
before finding the root cause. We also perform experiments
to measure the number of statements to examine by devel-
opers before reaching the root cause in comparison to other
techniques such as Tarantula [16] and Fonly [33]. Moreover,
we measure the effect of choosing diverse input test cases on
the size of the output common subsequence. Furthermore, we
evaluate our abstraction techniques effect on the length of our
input sequence covers, and evaluate the effect of the number
of test cases over both the running time and the length of
resulting common subsequence, comparing our approach to
multiple baselines. We show that our approach significantly
reduces the amount of time needed to discover the source of the
fault, and we also show the effectiveness of our sequence cover
abstraction techniques, for reducing the computation time and
the length of the output common subsequences, especially, for
the computationally intensive ones.

1) User Study: We address RQ1 in this experiment by
evaluating our techniques and tool under real-world usage
scenarios. We present the software bugs to human developers
that have no prior knowledge of the software and ask them
to identify the root cause. We worked with a group of six
competent developers, all pursuing PhD degrees in Computer
Science and have solid background in Software Engineering.
Three developers were asked to locate the root cause using
our tool only, and the other three were asked to use whichever
technique they were comfortable with, including command line
debugging or Eclipse tools. The assignment was performed
randomly. Each developer was asked to identify the root
cause of the three faults: ArgoUML (FileNotFoundException),
CrossWord Sage (NullPointerException and NumberForma-
tException). We measured the time from when the developer
started the debugging process until he/she identified the root
cause. The developers who used our tool took an average of
2:30, 1:26, 1:14 minutes to perform the tasks, respectively.
They accurately identified the root causes, and one of them
needed to check the source code once, while the others did
not check the source code at all. Furthermore, our developers
found the search tool very useful in finding relevant statements
to the statements they wanted to trace back from. They thought
the tool helped them a lot finding the bug source quickly, and
the variable values gave them hints about which variables to
focus their backtracking process on. The developers needed to

89

0:00

2:24

4:48

7:12

9:36

12:00

CS1 CS2 ArgoUML

T
im

e
(m

in
ut

es
)

Manual Debugging Proposed Approach

Fig. 3: Developer debugging time experiment

examine 12, 11, and 10 statements only in the subsequence
to find the root cause of the faults above, respectively. On
the other hand, developers who did not use our tool either
identified the source incorrectly, or took longer time to identify
it. For example, one developer just used the output exception
stack trace to identify the root cause, and only chose from the
lines that were referred to by the stack trace. That approach is
not correct, because the root cause of the problems does not
necessarily exist in the exception stack trace. That approach
led to incorrectly identifying two out of the three faults by that
developer. Disregarding the incorrect results, the developers
not using our tool took the following times on average to
complete the tasks: 9:18, 8:36, and 6:07 minutes, respectively.
All the results are shown in Figure 3. As we can see, the ratios
between the times taken by the developers using our approach
to the these of the developers using the other approach are
27%, 17%, and 20% for the three applications, respectively.
Therefore, on average, our approach saved developers 79% of
their debugging time in this experiment.

2) Comparison with other approaches: In this experiment,
we address RQ1 by comparing Disqover with two statement
ranking techniques, Tarantula [16] and Fonly [33]. We choose
Tarantula because Jones et al. [15] show that Tarantula out-
performs many other ranking techniques in fault localization.
Furthermore, we choose Fonly, as it is the only technique that
uses failed test cases only in fault localization like our tech-
nique. Both techniques rank the program statements according
to the their suspiciousness of being the root cause using a
scoring formula that assigns a score to each statement.

To compare our system to both systems, we use a metric
that quantifies the “number of inspected statements” until the
source is found. For our system, this metric is simply the
number of statements that a developer traces back in order to
identify the root cause starting with the failure statement. For
both Tarantula and Fonly, this metric is defined as the number
of statements whose score is greater than or equal to the score
of the root cause statement. To express an average case, instead
of counting all the statements whose score is equal to the score
of the root cause statement if many of them share the same
score, we just count half of them (to express the expectation
of inspecting the root cause statement if statements with equal
score are randomly ordered). We note that even with this type
of comparison, our system still has an advantage, which is that
the statements being inspected are not disconnected, or parts of
unrelated methods or classes. They actually form a sequence
as one statement leads to the other, and helps the developer
understand the execution sequence that leads to the error, while
with the other two approaches, the developer will probably

Fault No. of Failed TC No. of Passed TC
ArgoUML 22 100

Crosswordsage1 261 86

Crosswordsage2 321 45

Buddi 143 108

Freemind1 338 300

Freemind2 337 300

Freemind3 417 300

TABLE III: Application faults

1

10

100

1000

10000

Cros
sw

ord
1

Cros
sw

ord
2

Bud
di

Argo
UML

Fre
em

ind
1

Fre
em

ind
2

Fre
em

ind
3

Av
er

ag
e

#
 o

f s
ta

tm
en

ts
 to

be

 in
sp

ec
te

d

Application

Disqover
Tarantula
Fonly

Fig. 4: Comparison with Tarantula and Fonly

have to carry out the task of understanding the sequence
causing the bug of each suggested statement on his/her own.
Therefore, our system produces many statements that explain
an individual root cause, while other systems produce many
statements that are missing their explanation.

In this experiment, we use all of the 7 bugs discussed in
Section IV-A. We implement the formulas of both techniques
and obtain the scores. Table III shows the number of passing
and failing test cases we used with every application. Results
are presented in Figure 4 in log scale. We find that our system
leads to a significantly smaller number of statements. For
example, on average the number of statements that need to be
inspected by our approach is 112 times smaller than Tarantula’s
number of statements to be inspected, and 147 times smaller
than Fonly’s number of statements to be inspected. On the
other hand, in the case of Buddi bug, our system needs to
inspect a number of statements that is 1250 times shorter than
Tarantula, and in ArgoUML bug is 4291 times shorter than
Fonly. Finally, we use a significantly smaller number of test
cases than those reported in [33] and [15].

3) Test case diversity experiment: In this experiment, we
address RQ2 by studying the effect of the diversity of the input
test cases on the size of the output common subsequence.
As expected, the more diverse the input test cases are, the
smaller the size of the output subsequence is. To capture this
type of performance, we compare two approaches for selecting
the input test cases. The first approach selects sufficiently
diverse subset of test cases among the set of all input test
cases, and the other approach selects a random subset. To
measure diversity between two test cases, we use the size of
the intersection of their code covers. The smaller the number
of the intersection, the more diverse the two test cases are.
Therefore, to select a diverse subset of test cases of size n,
we start with the the two test cases with the highest diversity
according to the definition above, and incrementally add one
test case that will maximize the diversity, until we have n
test cases. Although this approach is greedy and may lead
to a local optima, we adopt it because of its efficiency. An

90

observation that we saw during implementing this experiment
is that many attempts of running random caused an out of
memory exception to occur, and took a very long time to
evaluate the common subsequence before finally timing out
(after hours of letting it run). To enable the comparison, we
choose an example attempt of running the random approach
that did not cause an out of memory exception and did not
time out, and show its results in our figures. The results of
our comparison are shown in Figures 5 (a), (b), (c) for the
faults of CrossWord Sage (NumberFormatException), Buddi,
and ArgoUML, respectively. We vary the number of test cases,
and measure the output common subsequence length for both
random and diverse selections. As we can see, for the same
size of input test cases, the test cases that are more diverse
lead to a shorter common subsequence size than that resulting
from the random selection approach. Note that the last point
in each figure has the same value for both approaches because
we use the same set of test cases as input to both approaches.
Also, as we can see from Figure 5 (b), Buddi with the random
selection approach always times out after using 5 test cases.

4) Sequence Cover Length Experiments: In this experi-
ment, we address RQ3 by evaluating the effect of our sequence
cover abstraction techniques over the average size of sequence
cover. We use four faults. For each fault, we evaluate the
length of the sequence covers in the following cases 1)
no initialization code removal and no sequence abstraction
techniques, 2) with removing the initialization code but without
applying any of our abstraction techniques, 3) with removing
the initialization code and applying block-based abstraction
only, 4) with removing the initialization code and applying
loop-based abstraction only, and 5) with removing initialization
code and applying both abstraction techniques. The results of
this experiment are shown in Figure 6, where we plot the aver-
age length of the sequence cover using each approach for each
fault on log scale. As we can see, removing the initialization
code results in a significant reduction of the average sequence
cover length relative to the original length, averaging a length
that is 20% of the original average sequence cover length.
After applying the loop-based abstraction, the average length
drops to 3% of the original length, which is significantly lower
than the reduction ratio without that abstraction technique,
illustrating the benefit of that approach. On the other hand,
both removing initialization code and block-based abstraction
only lead to 4% average length, which is slightly higher
than removing initialization code and applying loop-based
abstraction only, but still has a significant effect. The overall
length after applying all techniques together is 2.7% of the
original length. The reason is that when applying both loop-
based and block-based abstraction together, the effect of block-
based abstraction is not as high as if it is applied by itself, but
as we can see, applying them together is still beneficial. That
effect is more obvious when considering the running time of
the algorithm using both abstraction techniques, as we discuss
in Section IV-B5.

5) Running Time Experiments: In these experiments, we
address RQ3 by evaluating the effect of the number of test
cases on the algorithm running time using Disqover, and a
number of baselines. We compare the running time using
our approach to the running time using 1) block-based ab-
straction only, 2) loop-based abstraction only, and 3) none of
the abstraction techniques. We remove the initialization code

1

10

100

1000

10000

100000

1000000

Argo
UML

Bud
di

Cros
sw

ord
1

Cros
sw

ord
2

Fre
em

ind
1

Fre
em

ind
2

Fre
em

ind
3 Av

er
ag

e
te

st
 c

as
e

tr
ac

e
siz

e

Application

Original

After removing
initilaization code

After applying loop based
comperssion

After applying block-
based compression

After applying both
compression

Fig. 6: Sequence Cover Length Experiments

in all cases. We also compared against the naive approach
for constructing the common subsequences graph which we
discussed in Section III-B. However, we omit the results of
that approach from the discussion, as it does not scale, and
causes out of memory exceptions in all cases. The results are
shown in Figures 5 (d), (e), (f), for the faults: Crossword Sage
(NumberFormatException), ArgoUML (FileNotFoundExcep-
tion), Buddi (FileNotFoundException), respectively. As we can
see, the baselines outperform our approach only in the case
of Crossword Sage, because the length of sequence covers
is already very small. Therefore, the overhead introduced by
applying the abstraction techniques does not lead to much over-
all computation reduction over the case without abstraction.
However, in the other two cases, ArgoUML and Buddi, our
approach evaluates the common subsequences in much less
time than the baselines, especially in the case of Buddi, where
the average sequence cover length is very high, the advantages
of our approach are much more obvious. The highest running
time using our approach is 1.4 minutes (from Buddi), while
all other approaches could only run for one or two data
points, and broke our timeout limit which is 5 minutes for
these experiments in all other cases. Just for the purpose of
illustration, we removed the timeout constraint on the data
point with 5 test cases in the case of Buddi using block-based
abstraction only, and the common subsequence evaluation took
19 minutes, which is 2456 times slower than our optimized
approach. Another observation is related to the relationship
between the number of test cases and the running time. As
expected, the running time increases with the increase of the
number of test cases, with our approach being the most stable
to increasing the number of test cases, which shows that our
abstraction approaches play an important role in keeping our
approach scalable.

V. CONCLUSIONS

In this paper we introduced Disqover, a new method for
automated software debugging via sequence covers. Disqover
exploits automated test case generation tools to generate a large
number of test cases, and implements a novel algorithm to find
commonalities between the failing test cases by automatically
replaying them, and extracting their sequence covers, i.e.,
execution traces. We propose an efficient algorithm for finding
the common subsequences between multiple sequence covers,
and use that algorithm to present a suggested subsequence
to the developer for each error separately, which he/she can
trace back to find the root cause of a fault. Our experimental
evaluation shows the effectiveness of our approach in terms
of minimizing the developer’s debugging time and minimizing
the common subsequences algorithm output size and running

91

30

35

40

45

50

2 5 10 15 20 25 30 35 39

Si
ze

 o
f S

ub
se

qu
en

ce

Number of test cases

Diverse Random

40
1040
2040
3040
4040
5040
6040

2 5 10 15 20 25 30 35 40 45

Si
ze

 o
f S

ub
se

qu
en

ce

Number of test cases

Diverse Random

100

150

200

250

300

350

400

2 5 10 15 20 22

Si
ze

 o
f S

ub
se

qu
en

ce

Number of test cases

Diverse Random

(a) Crossword Sage (b) Buddi (c) ArgoUML

40

400

2 5 10 15 20 25 30 35 39

Ti
m

e
in

 m
ill

ise
co

nd
s

Number of test cases

No compression
With both compression
With block-based compression

40

400

4000

40000

400000

4000000

2 5 10 15 20 25 30 35 40 45

Ti
m

e
in

 m
ill

ise
co

nd
s

Number of test cases

No Compression
With both compression
With block-based compression

40

400

4000

2 5 10 15 22

Ti
m

e
in

 m
ill

ise
co

nd
s

Number of test cases

No Compression
With both compression
With block-based compression

(d) Crossword Sage (e) Buddi (f) ArgoUML

Fig. 5: (a-c) Test case diversity experiments and (d-f) Running time experiments

time. Finally, we will extend our approach to accommodate
other ranking functions for the common subsequences than
the function maximizing the sum of the node degrees in the
common subsequences graph.

REFERENCES

[1] ArgoUML. http://argouml.tigris.org/.

[2] Buddi. http://buddi.digitalcave.ca/.

[3] Crossword Sage. http://sourceforge.net/projects/crosswordsage/.

[4] FreeMind. http://freemind.sourceforge.net/wiki/index.php/Main Page.

[5] jdb - The Java Debugger. http://docs.oracle.com/javase/7/docs/
technotes/tools/windows/jdb.html, 1993.

[6] Cobertura (A code coverage utility for Java). http://cobertura.github.io/
cobertura/, 2001.

[7] C. Artho. Iterative delta debugging. STTT, 13(3):223–246, 2011.

[8] R. A. Assi and W. Masri. Identifying failure-correlated dependence
chains. In Fourth International IEEE Conference on Software Testing,
Verification and Validation, ICST 2012, Berlin, Germany, 21-25 March,
2011, Workshop Proceedings, pages 607–616, 2011.

[9] M. Brudno and B. Morgenstern. Fast and sensitive alignment of large
genomic sequences. In CSB, pages 138–, 2002.

[10] M. Chen, X. Qiu, and X. Li. Automatic test case generation for uml
activity diagrams. In AST, pages 2–8, 2006.

[11] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for software
fault localization. In ISSTA, pages 121–134, 1996.

[12] S. Gnesi, D. Latella, M. Massink, V. Moruzzi, and I. Pisa. Formal
test-case generation for uml statecharts. In Proc. 9th IEEE Int. Conf.
on Engineering of Complex Computer Systems, pages 75–84. IEEE
Computer Society, 2004.

[13] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, W. Schulte,
N. Tillmann, and M. Y. Levin. Automating software testing using
program analysis. IEEE Software, 25(5):30–37, 2008.

[14] T. Gyimothy, A. Beszedes, and I. Forgacs. An efficient relevant slicing
method for debugging. In ESEC / SIGSOFT FSE, pages 303–321, 1999.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), November
7-11, 2005, Long Beach, CA, USA, pages 273–282, 2005.

[16] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization of test
information to assist fault localization. In ICSE, pages 467–477, 2002.

[17] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[18] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In PLDI, pages 15–26, 2005.

[19] A. M. Memon. An event-flow model of gui-based applications for
testing. Software Testing, Verification and Reliability, 17(3):137–157,
2007.

[20] G. Misherghi and Z. Su. Hdd: hierarchical delta debugging. In ICSE,
pages 142–151, 2006.

[21] G. J. Myers. The art of software testing (2. ed.). Wiley, 2004.

[22] B. Ness and V. Ngo. Regression containment through source change
isolation. In COMPSAC ’97: Proceedings of the 21st International
Computer Software and Applications Conference, pages 616–621,
Washington, DC, USA, 1997. IEEE Computer Society.

[23] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon. Guitar: an
innovative tool for automated testing of gui-driven software. Automated
Software Engineering, pages 1–41, 2013.

[24] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon. Automated
and scalable t-wise test case generation strategies for software product
lines. In ICST, pages 459–468, 2010.

[25] I. Vessey. Expertise in debugging computer programs: A process
analysis. International Journal of Man-Machine Studies, 23(5):459–
494, 1985.

[26] Q. Wang, D. Korkin, and Y. Shang. A fast multiple longest com-
mon subsequence (mlcs) algorithm. IEEE Trans. Knowl. Data Eng.,
23(3):321–334, 2011.

[27] M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357,
1984.

[28] X. Yuan and A. M. Memon. Generating event sequence-based test cases
using gui runtime state feedback. IEEE Trans. Softw. Eng., 36(1):81–95,
Jan. 2010.

[29] A. Zeller. Yesterday, my program worked. today, it does not. Why? In
ESEC / SIGSOFT FSE, pages 253–267, 1999.

[30] A. Zeller. Isolating cause-effect chains from computer programs. In
SIGSOFT FSE, pages 1–10, 2002.

[31] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with
confidence. In PLDI, pages 169–180, 2006.

[32] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms.
In ICSE, pages 319–329, 2003.

[33] Z. Zhang, W. K. Chan, and T. H. Tse. Fault localization based only on
failed runs. IEEE Computer, 45(6):64–71, 2012.

92

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

