

 Int. J. Web Engineering and Technology, Vol. X, No. Y, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

An empirical approach to evaluating
web application compliance across diverse
client platform configurations

Cyntrica Eaton* and Atif M. Memon
Department of Computer Science
University of Maryland
4115 A.V. Williams Building
College Park, MD 20742, USA
Fax: 301–314–1353
E-mail: ceaton@cs.umd.edu
E-mail: atif@cs.umd.edu
*Corresponding author

Abstract: Web applications are the most widely used class of software today.
Increased diversity of web-client platform configurations causes execution of
web applications to vary unpredictably, creating a myriad of challenges for
quality assurance during development. This paper presents a novel technique
and an inductive model that leverages empirical data from fielded systems to
evaluate web application correctness across multiple client configurations. The
inductive model is based on HTML tags and represents how web applications
are expected to execute in each client configuration based on the fielded
systems observed. End-users and developers update this model by providing
empirical data in the form of positive (correctly executing) and negative
(incorrectly executing) instances of fielded web applications. The results of an
empirical study show that the approach is useful and that popular web
applications have serious client-configuration-specific flaws.

Keywords: web testing; inductive learning; cross-platform compatibility;
HTML tags.

Reference to this paper should be made as follows: Eaton, C. and
Memon, A.M. (xxxx) ‘An empirical approach to evaluating web application
compliance across diverse client platform configurations’, Int. J. Web
Engineering and Technology, Vol. X, No. Y, pp.000–000.

Biographical notes: Cyntrica Eaton is a graduate student in the Computer
Science Department at the University of Maryland. She received her BS in
Computer Science from Norfolk State University in 2001. She was awarded
fellowships from both the National Consortium for Graduate Degrees for
Minorities in Engineering and Science, Inc. (GEM) and The David and Lucile
Packard Foundation. Her general research interests include software testing
and reverse engineering; her current focus is the application of these principles
in web-based technology. She is a student member of the ACM and IEEE
Computer Society.

Atif M. Memon is an Assistant Professor at the Department of Computer
Science, University of Maryland. He received his BS, MS and PhD in
Computer Science in 1991, 1995 and 2001, respectively. He was awarded a
Gold Medal in his BS. He was awarded fellowships from the Andrew Mellon

 2 C. Eaton and A.M. Memon

Foundation for his PhD research. He received the NSF CAREER award in
2005. His research interests include programme testing, software engineering,
artificial intelligence, plan generation, reverse engineering, and programme
structures. He is a member of the ACM and the IEEE Computer Society.

1 Introduction

As one of the most influential technological developments of recent times, the World
Wide Web (WWW) (Hansen, 2002) has the potential to impact almost all walks of life
(Deshpande and Murugesan, 2001). Currently, WWW users perform many important
tasks online, including paying bills, ordering products, communicating via e-mail, and
even controlling household appliances. As the WWW has evolved through the years,
there have been significant increases in the complexity and variety of tools used to
access the web. Moreover, with the surging popularity of the web, the number of web
application developers and development tools has increased as well. These trends,
coupled with an elevated reliance on web applications and an increased expectation of
correctness, make Quality Assurance (QA) of web applications very important (Gaur,
2000; Huang et al., 2003).

This paper focuses on important QA challenges that stem from the increased diversity
of client platforms; specifically, on how web applications execute in different client
configurations. Ideally, web applications should render and function uniformly across
heterogeneous client platforms. In such a situation, QA could effectively be carried out
on one client configuration and the results extrapolated for the entire set. Yet, as shown
in Figure 1, the makeup of the client configuration has a significant impact on web
application execution. Such problems are severely compounded when end-users
fine-tune their browsing environments using several dozen options and install different
plug-ins, creating an enormous number of unique client configurations. For example,
setting/resetting the two binary options ‘Use TLS 1.0’ and ‘Use HTTP 1.1’ in Internet
Explorer via check-boxes creates four different client configurations, each of which may
cause web applications to execute differently.

Existing tools and approaches that evaluate the correctness of web applications
across multiple configurations have limited scope in that they focus on a small subset
of client platform configurations (Browser Photo by NetMechanic1; Doctor HTML2;
Bobby3). Moreover, popular tools such as Browser Photo are non-diagnostic, i.e., they do
not indicate whether a problem was encountered; consequently, they are unable to
diagnose the source of the actual problems. To test a web application, the developer
‘submits’ the Web Application (WA), usually by specifying a base URL. For clarity,
we define a WA as an application accessed via a web browser over a network.4 The tool
deploys the WA on several popular browsers and returns screen-shots of the WA as
displayed in the browsers. The developer examines the screen-shots and relies on visual
cues to discover errors. If visual cues (e.g., misrendered page elements) signal an error,
the developer then manually examines the application source code to identify the
cause. Owing to the limited scope and non-diagnostic nature of these approaches, the

 An empirical approach to evaluating web application compliance 3

result is an incomplete and resource-intensive analysis of the WA. Consequently,
client-platform-specific errors surface in fielded web applications. (Section 5 shows
several examples of such errors)

Figure 1 The featured web application executes differently on (a) Mozilla 0.9 on Windows XP
Professional and (b) Netscape on Windows XP Professional.

The research presented in this paper takes an alternative approach on two key fronts.
Instead of concentrating on rendering errors flagged by visual cues, we are also interested
in another, equally important, class of errors: behavioural faults. Moreover, instead of
evaluating a WA on a fixed number of client configurations, empirical data from actual
fielded web applications are used to generate an extensible model of the space of all
possible configurations. Each point in this space represents a unique client configuration.
Associated with each point is an inductive model, based on HTML tags, of how web
applications are expected to execute in the corresponding configuration. HTML tags
provide the basis for the inductive model largely because, as building blocks of web
applications, they provide directives that indicate how an application should be executed
and how users should be able to interact with various application elements. In short,
HTML tags are important correctness predictors when support for a given tag is known
to be non-existent or insufficient. Therefore, the inductive model predicts how a fielded
application is expected to execute based on knowledge of the HTML tags in source
code and the support provided for each in various target environments. The client
configuration model evolves automatically as empirical data in the form of positive
(correctly executing) and negative (incorrectly executing) fielded web applications are
discovered for particular configurations. A developer checks the correctness of a WA by
‘querying’ the model and obtaining, as output, a set of <client configuration, unsupported
HTML tag, faulty Web page> triples. In general, web applications are usually composed
of a set of interrelated web pages. For the purpose of this research, we are interested in
the individual web pages that make up the application.

(a) (b)

 4 C. Eaton and A.M. Memon

Our new technique has been implemented in a tool called the Internet Compliance
Engine (ICE). We evaluate our technique in an empirical study involving 16 client
configurations with 100 positive and 100 negative instances each. These instances are
used to create a client configuration space and an associated inductive model. The
resulting model is then used to evaluate the correctness of several popular web
applications based on knowledge of the HTML tags contained in the source and the
relative support of each. The results of the study show that our technique is both
(a) practical, in that the 200 instances were used to create each model with very
little effort and (b) useful, in that it helped to identify client-platform-specific support
errors in widely used web applications.

One of the limitations of this technique is the misclassification of tags, in particular,
the occurrence of false positives. A false positive is a tag that is actually unsupported yet
has erroneously been labelled as supported by the algorithm. In reporting the results of
our findings, we use the relative number of false positives discovered as a means of
evaluating the technique as the sample size increases.

This paper makes the following contributions to the field of web application QA:

• a formal model of web client configurations

• an inductive model, based on HTML tags, that evolves as users submit positive and
negative instances of web applications

• an empirical study that demonstrates that the inductive model is useful and practical

• evidence that popular web applications have serious client-configuration-
related problems.

Structure of the paper

The next section presents an assessment of current techniques. Section 3 gives a
high-level overview of the operation of ICE. Section 4 presents details of the inductive
model and algorithms to create and update the model. An empirical evaluation of the
technique is presented in Section 5. Finally, the paper concludes with a discussion of
ongoing and future work.

2 Related work

Although the literature recognises client-configuration-specific failures as a serious
problem (Kallepalli and Tian, 2001; Xu et al., 2003; Offutt, 2002; Dávila-Nicanor and
Mejía-Alvarez, 2004; Brajnik, 2004), none of the tools in ‘The QA Toolbox’ at the
WWW consortium website5 addresses this issue. The Device Independence Working
Group at the WWW consortium6 has started to discuss issues related to this problem.
However, their focus is on developing new standards for future web applications. There
are currently very few practical solutions available to web developers. Some of these
solutions and their limitations are discussed next.

 An empirical approach to evaluating web application compliance 5

2.1 Manual execution-based techniques

The most popular approach to evaluating a web application across multiple client
configurations is to launch the application in several <browser, browser version,
operating system> permutations and analyse the results (Eaton and Memon, 2004a–b).
Verification of web application correctness, using this strategy, is essentially a qualitative
comparison between expected and observed presentation and functionality. While this
approach features first-hand exposure to existing web application QA issues, lack of
client configuration availability during testing can substantially influence the breadth
of target client platforms explored. To verify web application correctness, the application
must be manually loaded and if a target environment is unavailable, subsequent
analysis is infeasible. In addition, the time and effort required to effectively assess web
applications in this manner can also impede the depth of the web application evaluated.

2.2 Automated execution-based techniques

Tools such as Browser Photo partially automate the above approach by loading specific
web pages in a pre-defined set of browsing environments and mailing screen-shots of the
results back to the user. The user then manually determines the correctness of the WA by
examining the screen-shots. If a visible error is discovered, the user manually determines
the cause of the problem. While this approach automates the process of loading web
applications, it is still resource intensive, non-diagnostic, and limited to a small, fixed set
of client configurations. In addition, it can only be used to detect failures evident from
visual inspection. One practical example of this problem surfaces when HTML tags have
an accesskey attribute. Functionally, the accesskey tag attribute is intended to
provide shortcut access to elements on a page. However, if this attribute is unsupported in
a client configuration (e.g., one using the Opera browser), it is not evident from visual
examination of screen-shots. Moreover, in many of these tools, the web application can
only be observed above the fold since scrolling to see the entire screen is not an option in
individual screen-shots.

2.3 Automated static techniques

An orthogonal, static approach shifts the basis of quality analysis from a comparison
between actual and expected web page appearance to a comparison between the HTML
tags used to structure web pages and the support provided for each in target environments
(Doctor HTML; Bobby). In general, the basis of most static evaluations is recognition of
code patterns consistently associated with erroneous behaviour. In terms of the web,
characterisation of these error-inducing code fragments is relatively straightforward;
browsing environment execution obstacles to arise when unrecognised and, subsequently,
unsupported HTML tags are encountered in the document source code. Evaluating the
correctness of a web application within a client configuration in this context involves
identifying unsupported HTML tags in the underlying source code. Hence, the strength of
this analysis depends on the quality and completeness of the tag support rule set. For
example, Doctor HTML failed to diagnose the problem shown in Figure 2.

 6 C. Eaton and A.M. Memon

Figure 2 The problem featured here was not detected by Doctor HTML.

2.4 Testing specific configurations

Instead of checking the correctness of a given web application on a variety of client
configurations, Berghel (1996) focuses on testing a specific client configuration for a
specific set of web applications. In this approach, a Web Test Pattern is composed of
a suite of test web pages, each of which incorporate several HTML tags and descriptions
of the impact they would have if executed correctly. This approach allows users to test
their particular client configurations to determine compliance levels. However, this type
of testing is severely inefficient for web developers interested in establishing compliance
across a wide variety of platforms. To further illustrate the point of inefficiency, consider
the example shown in Figure 1. In that case, the developer would be forced to launch
the page in Netscape 4.8 on the Windows XP platform before noticing the existence
of a problem. The need to have each possible environment available and to launch the
page in the corresponding environment in order to detect a problem is clearly time and
resource intensive.

2.5 QA research directions for web applications

Given increased interest in the quality and reliability of web applications, there have been
quite a few research efforts directed towards establishing effective QA techniques. These
include general frameworks (Xu et al., 2005; Sneed, 2004; Ricca and Tonella, 2005; Xu,
2004), test-case generation strategies (Bellettini et al., 2005), traditional white-box testing
techniques (Tonella and Ricca, 2004; Ricca and Tonella, 2001), object-oriented strategies
(D.C. Kung and Liu, 2000) and statistical testing approaches (Kallepalli and Tian, 2001).
These tools and techniques assess the functionality and performance of web applications.
While our work shares in the same spirit of attempting to identify effective QA
techniques, factoring in the browsing environment as a cause for web application failure
sets our work apart from those previously mentioned.

(a) (b)

 An empirical approach to evaluating web application compliance 7

A small body of work does consider the browsing environment to be a critical factor
in evaluating the correctness of web application functionality. Lucca and Penta (2003)
use the concept of state charts to encode the effect of navigation buttons, such as forward
and backward, on the web application state. More specifically, this approach allows for
the discovery of failures caused by the use of navigation buttons. This particular work is
different from ours because it does not consider the type of browser used. Moreover, in
our current model, we do not attempt to test for the interaction between a series of web
pages within a given web application.

The work presented in Xu et al. (2003) is quite closely related to ours. The motivation
behind their work is to ensure that web applications render and function properly in
various browser configurations. The crux of the approach is to reduce the number of
exhaustive test cases needed based on single factor- and pair-wise coverage criteria. In
contrast, our approach is to derive a model of supported and unsupported tags tailored
to specific environments. This allows us to derive a detailed knowledge of tag support
issues for each environment.

The research presented in this paper builds upon some of the above techniques. It
leverages the HTML tags embedded in web applications and builds an inductive model of
tag support in client environments. This work improves upon the above techniques by
using empirical data, in the form of positive and negative web application instances, to
infer knowledge of tag support provided in specific client configurations. Making this
information available will improve similar approaches since it will provide the basis for
a more accurate, comprehensive evaluation. The next section gives an overview of our
technique, which is implemented in the tool ICE.

3 ICE in action

Figure 3 gives a high-level overview of three processes implemented in ICE. The central
component, the inductive model (described in the next section), is shared by these three
processes. A Knowledge Acquisition process takes as input multiple instances of positive
and negative WAs. ICE analyses these instances by parsing the HTML source of each,
collecting tag information and updating the inductive model. Since the inductive model
relies on manually provided instances of positive/negative web applications, it is
expected that some of the information may be insufficient for analysis. There is a key
relationship between the amount of data submitted and the classification of a given
HTML tag as supported or unsupported. This mainly results from the fact that each web
application serves as evidence of the behaviour of the tags featured within its source
code. Roughly, the more often a tag appears in faulty web applications, the more likely
it is to be unsupported. In terms of a more practical example, if users have submitted
only one web application that features a specific tag, the results of this submission
cannot be extrapolated to other web applications. A process called Automated Acquisition
determines the sources of missing information (usually tags), spawns a web search (e.g.,
Google) to locate other applications that contain this specific tag, submits the returns
for manual classification as either positive or negative, and updates the model with
the results. A third process called Web Application Evaluation will be used by web
application developers to test their WA. The WA developer specifies the base URL of the
application. The WA is traversed using a crawler and its tag information is extracted. An

 8 C. Eaton and A.M. Memon

automated Application Evaluator then employs the latest version of the inductive model
to check the correctness of the WA. The web application is considered to be correct for a
given client configuration if and only if every HTML tag embedded in the source code is
recognised by the inductive model as supported by the client configuration. The output
report is a set of <client configuration, unsupported HTML tag, faulty Web page> triples
which indicate the specific client configuration, HTML tag and the problematic web page
in the web application.

The next section describes the structure of the inductive model and algorithms to
create, update and query it.

Figure 3 ICE in action

4 Inductive model

A central component of our approach is a formal model of HTML support in specific
client configurations. This model contains two parts:

1 a graph representation of client configurations

2 an association vector for each client configuration that relates HTML tags to web
application failures. This section describes the details of these two parts.

4.1 Modelling client configurations

Each client is described in terms of options, such as operating system installed, browser,
browser settings, network speed and geographical location. Each option takes its value
from a discrete set of settings. For example, the Operating System option (called OS)
in our empirical study takes values from the set {WinXP, Mac OS X}. A client’s
mapping from options to settings is called a configuration and is represented as a set

Application
Evaluation

Inductive Model

Automated Acquisition

Knowledge
Acquisition

Positive/Negative
Web Application

Instances

Parse
Web

Application

Tag
Information

Update
Model

Report

User/Developer

Search for
Additional Web

Application
Instances

Determine Sources of
Missing Information

Update
Model

Tag &
Client Configurations

that need
Additional Instances

Additional
Instances

Classify
Instances

Instances Classified as
Positive/Negative

Web Application
Developer

Base

Application
Evaluator

Crawl
Application

Web
Application

Tag
Information

 An empirical approach to evaluating web application compliance 9

{(V1, C1), (V2, C2),…, (VN, CN)} where each Vi is an option variable and Ci is its constant
value, drawn from the allowable settings of Vi. In practice, not all configurations make
sense (e.g., the (Browser=Web TV) and (Version=2.0) feature is not supported when
(OS=Linux)). Therefore, we allow inter-option constraints which limit the allowable
settings of one option based on the settings of others. We represent constraints as
(Pi → Pj), meaning ‘if predicate Pi evaluates to TRUE, then predicate Pj must evaluate to
TRUE’. A predicate Pk can be of the form A, –A, A&B, A|B, or simply Vi = Ci, where A,
B are predicates, Vi is an option and Ci is one of its allowable values. An example of a
constraint is ((Browser=IE) and (Version=6.0)) → (OS=Windows XP) which means that
if the Internet Explorer 6.0 browser is used in a run-time environment, then the operating
system must be Windows (since version 6.0 is not available for other operating systems).
A valid configuration is a configuration that violates no inter-option constraints.

Figure 4 shows an example of a client configuration space. Each node represents a
valid configuration. Edges connect two nodes that differ by exactly one option setting.
For example, nodes 1 and 2 differ by one option setting (OS=Linux vs. OS=WinXP);
similarly, nodes 1 and 3 differ by one option setting (Browser=Netscape vs.
Browser=InternetExplorer). Nodes 2 and 3 are not connected since they differ
by more than one option setting. These edges are used to traverse the client configuration
space (in the algorithm discussed in Section 4.3). Without loss of generality, we assume
that the client configuration space is connected (i.e., it is one connected graph; ‘dummy’
nodes are used to connect disjoint parts).

Figure 4 An example of a client configuration space

2

1 3

Browser=Netscape
OS=WinXP

Browser=Netscape
OS=Linux

Browser=Internet Explorer
OS=Linux

1.45 bold

-0.76 java
1.1

1.28 table

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

1.45 bold

-0.76 java
1.1

1.28 table

-2.70 java
1.2

-2.35 div
0.12 html
ϕ

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

1.45 bold

-0.76 java
1.1

1.28 table

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

1.45 bold

-0.76 java
1.1

1.28 table

-2.70 java
1.2

-2.35 div
0.12 html
ϕ

1.45 bold

-0.76 java
1.1

-2.70 java
1.2

-2.35 div
0.12 html
ϕ

1.45 bold

-0.76 java
1.1

1.28 table
-2.35 div
0.12 html
ϕ

1.45 bold

-0.76 java
1.1

1.28 table

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

1.28 table

-2.70 java
1.2

-2.35 div
0.12 html
ϕ

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

-0.12 java
1.2

-2.35 div
0.12 html
ϕ

 10 C. Eaton and A.M. Memon

4.2 Modelling the association vector

Each point in the configuration space is mapped to an association vector. Intuitively, the
association vector encodes the likelihood that a given tag is associated with incorrect
execution. For example, our empirical study (Section 5) showed that the <blink> tag
does not work in Netscape browsers; the association vector for each client configuration
that has Browser=Netscape should link the <blink> tag with a high probability
for failure.

In the inductive methodology presented here, web pages that comprise web-based
applications are the raw material for training. HTML tags that structure each web
application and the manual classification of the web application as either a positive
(correctly executing) or negative (incorrectly executing) instance provides a statistical
basis for determining the influence a given tag has on the web applications’ execution in
a client configuration. The first step in deriving tag support knowledge is to evaluate the
correlation coefficient, φ, of each discovered tag (Yang and Pedersen, 1997; Ng et al.,
1997). Intuitively, φ uses observance of positive and negative phenomena to estimate the
association of an element to one category or another. Note that the association vector is
essentially a collection of φ values for all of the tags in a client configuration. Since the
set of φ values are generally unique for each client configuration, one association vector
is mapped to each point in the client configuration space. The following formula is used
to compute φ for tag t and client configuration c:

()
(,) () () () ()

0, if 0; 0; 0; 0

N AD CB

t c A C B D A B C D

A C B D A B C D

ϕ
⎧ × −
⎪= + × + × + × +⎨
⎪ + = + = + = + =⎩

 (1)

where (for a configuration c) N is the number of instances observed, A is the number of
correctly executing instances that contain tag t, B is the number of incorrectly executing
instances that contain tag t, C is the number of correctly executing instances that do not
contain tag t, and D is the number of incorrectly executing instances that do not contain
tag t. Note that since A + C is the total number of positive instances and B + D is the total
number of negative instances, the denominator goes to zero if there are no positive
instances (A + C = 0), no negative instances (B + D = 0), no occurrence of a given tag
(A + B = 0), all positive and negative instances contain the tag (C + D = 0) or there are
no instances at all (A = B = C = D = 0). When the denominator is 0, φ evaluates to 0.

Evaluation of φ

The use of φ as a predictive measure centres on the sign as well as the magnitude of the
value. A negative value indicates that the tag is expected to be unsupported in the
corresponding client configuration while a positive value indicates that the tag is
expected to execute correctly. A value of zero indicates that the tag is not expected to
have any influence on application execution. For example, this value is assigned to tags
such as <HTML> that occur an equal number of times in both positive and negative
instances. The magnitude of φ provides insight into the strength of association between
the tag and the corresponding category (positive or negative) given the instances
examined. The larger the value, the better the possibility that the tag has been correctly
characterised. Subsequently, φ allows us to predict the risk that a tag is unsupported in a

 An empirical approach to evaluating web application compliance 11

given configuration. We essentially want to determine the tags most responsible for the
classification of a page as a negative instance by identifying tags that have a high
association with faulty web pages. Note that the tags themselves are not faulty; they
are either supported or unsupported in a given environment. The appearance of an
unsupported tag in a web application, however, increases the risk for faults if the
application is launched in an incompliant environment.

For a concrete example, consider the set of web applications classified as positive or
negative for an arbitrary client configuration shown in Figure 5. Note that there is a
combined total of eight applications in the set (i.e., N = 8), five positive and three
negative instances. Also note that the tag names have been modified to save space and
improve presentation. Consider the <div> tag. It does not occur in any positive instance
(A = 0, C = 5) and occurs in one negative instance (B = 1, D = 2). As a result, the φ value
associated with <div> is –1.38. This suggests that web applications that contain this
tag will execute incorrectly in this client configuration. On the other hand, the <bold>
tag occurs in one positive instance (A = 1, C = 4) but never in a negative instance
(B = 0, D = 3). Accordingly, its φ value is 0.83. This suggests that the <bold> tag is
supported in the client configuration, but since its magnitude (0.83) is smaller than that
of the <div> tag (1.38), it has a weaker association with correct execution than the
<div> tag has with incorrect execution. A full list of tags for all the instances shown in
Figure 5 and their corresponding φ values is shown in Table 1.

Figure 5 Set of web applications classified as positive or negative

<html>
<..javascript1.1>
<..javascript1.2>
<table>

<html>
<..javascript1.1>
<table>

<html>
<..javascript1.1>
<..javascript1.2>

<html>
<bold>
<table>

<html>
<..javascript1.1>

Positive Instances

<html>
<div>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

<html>
<..javascript1.2>
<table>

Negative Instances

 12 C. Eaton and A.M. Memon

Table 1 Values for all tags in the example in Figure 5

Tag <html> <div> <javascript 1.2> <table> <javascript 1.1> <bold>

φ 0.00 –1.38 –1.70 –1.26 2.19 0.83

In the next section, we describe algorithms to (a) create/update an association vector
when new positive/negative instances of web applications are available and (b) use the
vector to test a given web application.

4.3 Algorithm to generate/update the inductive model

The association vector for a given client configuration is updated each time new
information, in the form of positive and negative instances, is available for that client
configuration. The updateVector() algorithm shown in Figure 6 is invoked (via the
two processes Knowledge Acquisition and Automated Acquisition shown in Figure 3) for
each web page in the instance.

Figure 6 The updateVector() algorithm

1 Algorithm::updateVector(T /*currentPageTagset*/, Config /*clientConfiguration*/, isFaulty){
2 associationVector = getVector(Config);
3 IF (!exists(associationVector)) {associationVector = createVector(Config);}

4 /*update A and B values for the φ equation*/

5 FORALL t ∈ T DO {

6 IF (t ∉ Config.tagsSeen) { /* Have we seen this tag before?
7 associationVector.insertElement(t);
8 insert(t,Config.tagsSeen); }
9 IF (isFaulty) {t.incrementA()} ELSE {t.incrementB()}
10 }

11 /*update unsupported tag list for the current configuration*/
12 IF (isFaulty) {increment(negativeSeen);} ELSE {increment(positiveSeen);}

13 FORALL t ∈ T DO {
14 /*update C and D values for the phi equation*/
15 t.setC(positiveSeen-t.A);
16 t.setD(negativeSeen-t.B);
17 t.calculatePhi();

18 IF (t.associationStrength < 0){
19 insert(Config.unsupportedTags, t);

20 ELSE IF ((t.associationStrength >= 0) && (t ∈ Config.tagsSeen)){
21 delete(Config.unsupportedTags, t);
22 }}}

 An empirical approach to evaluating web application compliance 13

As shown in Figure 6, updateVector() takes three input parameters:

1 T, the set of tags in the web page

2 Config, the client configuration encoded as a set of (option, settings) pairs

3 isFaulty, a boolean flag indicating whether the page executes correctly or
incorrectly in Config (Line 1).

If an association vector already exists for Config, then it is updated (Line 2); otherwise
a new (empty) vector is created (Line 3). Each tag in T is processed one by one; a new
entry is created for each new tag (not already in the vector). The A and B values
(corresponding to the φ formula) are updated (Line 9). Recall that A and B correspond to
the number of positive and negative instances respectively that contain the tag. The A
associated with the tag is incremented if this is a positive instance; B is incremented if
this is a negative instance. The number of negative/positive instances seen so far is
incremented based on the status of the current instance (Line 12).

Once A and B values have been updated, C and D values can be derived
(Lines 15–16) and φ can be recomputed for affected tags (Line 17). More specifically,
C is the number of positive instances seen to date minus A, the number of positive
instances that contain the given tag; likewise for D and B in negative instances. Once
A, B, C and D are computed, the φ value is calculated; if it is negative (Line 18), the
tag is inserted into a vector called unsupportedTags (associated with Config)
(Line 19). However, if φ has a positive value and it is currently recognised as an
unsupported tag in Config, it is deleted from the vector unsupportedTags. The
unsupportedTags vector is used in the algorithm described in the next section.
Recall that in this approach, we are using φ as a predictive measure of tag support; as the
values of φ change, the tag can be reclassified as supported/unsupported by our system.
However, whether the tag is truly supported or unsupported in a given environment does
not change. We note that although we have described an ‘aggressive’ algorithm that
updates φ values each time a new positive/negative instance is available, in practice, for
reasons of efficiency, the update could be performed on demand, i.e., computed when
needed, or periodically after several new instances have been seen.

4.4 Algorithm to use the inductive model

The Web Application Evaluation process shown in Figure 3 queries the inductive model
to determine the set of configurations in which a given web application will execute
incorrectly. The process invokes an algorithm called queryData(), shown in Figure 7.
The algorithm takes one parameter: W, a web application which is a collection of web
pages. The set of unsupported tags is retrieved for each client configuration in the
inductive model (Line 3). The tags of each page in the web application are extracted
(Line 5). If the web page contains at least one tag known to be unsupported in the
configuration, the page is marked as faulty (Line 10) and the algorithm returns a set
of <client configuration, unsupported HTML tag, faulty Web page> triples and is
terminated. Again, note that for simplicity, we have not described details that improve the
efficiency of the overall process. For example, ICE only examines configurations whose
association vectors contain tags relevant to the application being tested. In this case, tags
are relevant to the application if they are actually contained within the source code.

 14 C. Eaton and A.M. Memon

Figure 7 The queryData() algorithm

1 Algorithm::queryData(W /*WebApplication*/){

2 FORALL config ∈ clientConfigurations DO {

 /*get the list of unsupported tags associated with the current configuration*/
3 unsupportedTags = config.unsupportedTags;

4 FORALL w ∈ W DO {
 /*get the list of tags in the current Web page*/
5 currentTags = getTags(w);

 /*check to ensure that the current Web page does not include
 any of the unsupported tags*/

6 FORALL f ∈ unsupportedTags DO {
7 IF (f ∈ currentTags) {

8 RETURN_FAULTY(config,f, w); break}}}}

5 Empirical study

Having described the inductive model and the processes/algorithms that create/update
and use the model, we now present details of an empirical study conducted to determine
the feasibility and utility of the overall approach. The major research questions we are
attempting to address centre around the ability of the correlation coefficient, φ, to
distinguish between supported and unsupported tags and the impact of sample size on
the results.

5.1 Infrastructure

In order to conduct the study, the algorithms listed in Figures 5 and 6 were implemented
in Java. The subject usage environments were chosen for the study by varying several
browsers, operating systems and browser settings. In particular, Internet Explorer 6.0,
Mozilla 1.5, Netscape 4.8, and Opera 6.0 were used on WinXP and Mac OS X platforms.
In terms of individual browser settings, Javascript was enabled/disabled. Hence the client
configuration space contained 4 × 2 × 2 = 16 points. These 16 points will be referred to as
c1 through c16. A detailed listing of the client configurations associated with each point is
provided in Table 2. We chose this sample set in order to reflect the wide diversity of
usage environments. To analyse the results, we modelled the gold standard or actual
knowledge of tag support rules in Microsoft Excel and developed several Visual Basic
scripts to summarise the data.

 An empirical approach to evaluating web application compliance 15

Table 2 Configuration point details

Configuration point Client configuration

c1 <Netscape 4.8, WinXP, Javascript enabled >

c2 <Netscape 4.8, WinXP, Javascript disabled>

c3 <Netscape 7.01, Mac OS X, Javascript enabled>

c4 <Netscape 7.01, Mac OS X, Javascript disabled>

c5 <Internet Explorer 6.0, WinXP, Javascript enabled>

c6 <Internet Explorer 6.0, WinXP, Javascript disabled>

c7 <Internet Explorer 5.0, Mac OS X, Javascript enabled>

c8 <Internet Explorer 5.0, Mac OS X, Javascript disabled>

c9 <Opera 6.0, WinXP, Javascript enabled>

c10 <Opera 6.0, WinXP, Javascript disabled>

c11 <Opera 6.0, Mac OS X, Javascript enabled>

c12 <Opera 6.0, Mac OS X, Javascript disabled>

c13 <Mozilla 1.5, WinXP, Javascript enabled>

c14 <Mozilla 1.5, WinXP, Javascript disabled>

c15 <Mozilla 1.5, Mac OS X, Javascript enabled>

c16 <Mozilla 1.5, Mac OS X, Javascript disabled>

5.2 Empirical method

5.2.1 Research questions and evaluation strategy

Our empirical method was designed to answer the following questions:

1 Do many fielded web applications really have client-configuration-
specific problems?

2 How well does the association vector approach help to identify such problems?

3 How much manual effort is involved in identifying and submitting positive/negative
examples of web applications?

4 How much manual work is involved in classifying web applications returned by the
automated acquisition process as negative and positive?

5 Are the results obtained from this technique always accurate? Are there any
false positives?

6 How is the rate of false positives affected by the total number of observed instances?

The first question is important because it justifies the purpose of our study. In the same
vein, the second question was designed to analyse the viability of the approach we
discuss in this paper. The third question was posed because users play a key role in the
application of our approach; ease of use, therefore, is an important consideration. The
fourth question, on the other hand, addresses the ability to utilise user input to expand and
improve the model. To address the spirit of the fifth question, we expect the

 16 C. Eaton and A.M. Memon

misclassification of tags, in terms of False Positives (FPs), to have a large impact on the
feasibility of the approach. To be clear, we consider negative classification of a tag to
mean that the tag is not supported in a given environment and positive classification to
indicate that the tag is supported. Subsequently, a false positive is an unsupported tag
labelled incorrectly as supported. Since a direct consequence of a false positive is that a
faulty page could unwittingly be released into the field, it is necessary that the measure
we use to evaluate the approach penalise techniques that allow for more false positives.
As a result, we have defined the measure FPR and calculate its value as follows:

FP
FPR

Total number of tags
= (2)

We pose the sixth and final question to observe whether FPR improves as more
information is obtained.

5.2.2 Independent and dependent variables

The only independent variable in this study is the size of the training set. The dependent
variable is the accuracy of tag classification predictions measured here by FPR.
Because client configurations are simply subjects in our experimental design, the client
configuration is neither an independent nor a dependent variable.

5.2.3 Experimental procedure

The following process will be used to conduct the study:

Step 1 Select a set of client configurations, C, where cx is the x-th configuration in C
and 1 ≤ x ≤ 16.

Step 2 For each cx ∈ C, select an initial pool, Pcx, of positive and negative web pages.

Step 3 Parse web application source code, extract the HTML tags, and abstract the tags
using the conditioning technique, TC. This will produce Pcx, TC, a representation
of the positive and negative web pages in which tags contained in the source
have been processed to facilitate the inductive process. Tag conditioning is
explained further in Section 5.2.6.

Step 4 Model the gold standard of tag support rules for later evaluation.

Step 5 Evaluate φ for tags discovered in a set of web pages using the following
sub-steps:

a Randomly select 50 web pages from cx without replacement.

b Generate the inductive model by calculating φ for Pcx, TC.

c Calculate the corresponding FPR value.

d For five iterations...

1 Randomly select 25 web pages from cx without replacement. (None of the
web pages selected during this step will have been observed in any
previous steps.)

 An empirical approach to evaluating web application compliance 17

2 Generate the inductive model by calculating φ for Pcx, TC.

3 Calculate the FPR value for the inductive model.

A detailed account of each step follows in subsequent sections.

5.2.4 Step 1: client configuration selection

The overall strategy in selecting subject client configurations was to include a broad
range of older and newer browsing environment configurations; this was done to reflect
the widely varied usage profiles in use in the ‘real world’. The set of 16 configurations
we chose with this criterion in mind is shown in Table 2.

5.2.5 Step 2: training set selection

Each of the 16 configurations listed in Table 2 had an initial application pool of 200 web
pages, 100 negative instances and 100 positive instances. Some of the negative instances
are shown in Table 3. Retrieval of positive and negative web pages was guided by the
gold standard that provided data on the tag support in the various environments. We used
the Google search engine to locate pages that incorporated fault-inducing tags. Because
Google ignores the brackets (‘<’ and ‘>’) that sandwich HTML tags and there was no
feasible way to pose queries to ensure that pages which merely mentioned the tag name
and did not actually use it were not included in the result set, retrieval of web pages
with desired tags was a challenge. More specifically, since Google provided a basic
mechanism for locating pages, identifying returns that were actually useful was tedious
at best.

Once all the web applications had been identified, submitting them to ICE for
automated analysis took a few seconds per web page. Note that submission to ICE only
entails saving the source code of the web page and identifying it as either a positive or
negative instance. This is currently implemented with a folder reserved for positive
instances and a folder reserved for negative instances; users save the source code to the
appropriate folder for later analysis.

As expected, some of the tags existed in too few web applications to accurately
predict whether the client environment provided support. For example, for a certain
configuration, the tag <html lang = en> occurred in 13 positive instances and no
negative instances. Similarly, for another configuration, <div align = left>
appeared in five positive instances and eight negative instances. The inductive model did
not contain sufficient information about these tags to be useful for analysis. We then
started the automated acquisition process using the Google search engine. More
specifically, we posed queries to the Google engine that would retrieve web pages with a
given tag. An example query that was used to retrieve web pages containing the
<html lang = en> tag is html lang en {href head}.

The last two query elements (shown in curly braces) were issued when the query
posed by the first three terms yielded too many pages which only mentioned the tag.
Once pages which actually used the tag were returned, they were loaded in the associated
client configuration and observed to determine whether they were positive or
negative instances. Negative instances that had visual abnormalities were relatively

 18 C. Eaton and A.M. Memon

easy to identify. Negative instances with non-visual errors (such as non-support for
the accesskey tag, had a greater chance of being incorrectly labelled as a
positive instance.

Table 3 Part of the negative instance set of the initial web application pool

URL Configuration point

www.hasbro.com/scrabble/home.cfm c1

home.netscape.com/ c2

www.nasa.gov/externalflash/exp12_front/index.html c3

www.juiceguys.com/ c4

www.richinstyle.com/bugs/operademo.html c5

www.ameristarcasinos.com/cactus/index.asp c6

www.useractive.com/learning/dhtml/dhtmltut7.php3 c7

www.simonstl.com/dynhtml/update/code/chap5/onbounce.html c8

retreatvillage.com/activities.html c9

www.gsn.com/ c10

www.physics.utah.edu/news/y04m02d26.html c11

www.sinel.com/esp/home.htm c12

5.2.6 Step 3: tag extraction/abstraction

ICE accepts the HTML source code of positive and negative web pages as raw data and
extracts the HTML tags incorporated in the page. In order to derive tag support
knowledge from the submitted instances, however, tag data must be conditioned. Given
the inductive nature of the algorithm, tag representation has a significant impact on the
quality of tag support rules learned. HTML tags can be represented in raw form during
inductive knowledge discovery or they can be conditioned so that certain features are
filtered; this results in the folding of a series of tags that differ by at least one variable
into one representation. Indeed, such conditioning could drastically reduce the number
of tags considered during induction, while, perhaps, losing important information in
the process.

More specifically, certain HTML attributes such as width, href and summary
have numbers, URLs and strings of text as values. We do not want to discriminate
between these tags based on their specific values. To understand how we handle this
problem, consider the following:

<table summary="XYZ"> and

<table summary="ABC">.

We are only interested in the instance of the tag table and the attribute summary. As a
result, both tags are collapsed into one, and represented as <table summary="#"> in
the association vector.

On the other hand, there are some instances when knowledge of the attribute value is
key. Such is the case for the following:

<script language="javascript1.3"> and

<script language="javascript1.1">.

 An empirical approach to evaluating web application compliance 19

Subsequently, we have designed an abstraction strategy in which a carefully selected
number of predefined attributed values are preserved; attributes with number and URL
values, for example, are collapsed. Once tags are discovered, ICE automatically
conditions them.

5.2.7 Step 4: defining the gold standard

Generally speaking, the gold standard serves as a ground truth, a way to compare derived
values to known values in order to estimate how well a mechanism performs its task. In
this case, the ground truth is the actual support provided for a given tag in a particular
client browsing environment. We manually define our ground truth with the help of a
website that provides tag support data. The gold standard can be modelled as a function,
GS, that accepts a tag, t and a configuration, cx, as input and returns a boolean value that
indicates support or non-support as output. A more formal definition is provided below
in Equation (3):

, if tag is supported in configuration
(,)

, otherwise
x

x

yes t c
GS t c

no

⎧
= ⎨

⎩
 (3)

5.2.8 Step 5: tag classification and evaluation

Recall that we are using the correlation coefficient, φ, to predict whether a tag is either
supported or unsupported in a target client configuration. During Step 4 (Section 5.2.7),
the φ-based tag classification strategy was applied to the data and the FPR value was
calculated. To determine the number of false positives, we use the function AR (actual
results), which is analogous to the GS calculation shown in Equation (3). More
specifically, AR is a function that accepts a tag, t, and a configuration, cx, as input and
returns a boolean value that indicates support or non-support based on the inductive
model. Like GS, AR is modelled as shown below:

, if is expected to support
(,)

, otherwise
x

x

yes c t
AR t c

no

⎧
= ⎨

⎩
 (4)

Subsequently, a false positive occurs when GS(t, cx) = no and AR(t, cx) = yes. In this
step, we compare the predicted classification of the tag with that of the gold standard
and use the FPR equation introduced earlier to determine how well the classification
strategy performed.

5.3 Threats to experimental validity

5.3.1 Internal validity

The internal validity of experimental results is threatened when results of the dependent
variable could be tainted by modelling and measurement errors. In each of the questions
we address, FPR is the primary dependent variable. Hence threats to internal validity, in
this context, include possible errors in measuring/designating the training set and
modelling/executing both the tag abstraction scheme and tag classification strategy.

 20 C. Eaton and A.M. Memon

Another threat lies in the correctness of the gold standard. The source used as the
basis for the gold standard, in some instances, relies on the documentation provided from
the browser manufacturer. Since this can be erroneous at times, it can have an undesirable
impact on false positive rate evaluations. More specifically, recall that a false positive
occurs when GS(t, cx) = no and AR(t, cx) = yes. If GS(t, cx) should actually be yes in a
given case, but it incorrectly returns a value of no as a result of incorrect documentation,
the FPR will be evaluated to a higher value than it actually should.

5.3.2 External validity

Threats to external validity, on the other hand, limit the ability to generalise results.
Several candidates for this constraint apply. For one, we are currently only considering
pages in which there are HTML-induced faults that can be linked to a certain tag and
not, perhaps, Javascript errors that can be linked to a faulty variable. Other threats
include possible misclassification of web pages on the part of submitters and low
usage of a given client configuration platform (resulting in less training data for the
inductive algorithm). Given our expectation that inductive model accuracy will improve
as more examples are submitted, the volume of data provided is important. We have
acknowledged this and attempted to include an adequate number of pages in our
experiment; similar considerations must be made to ensure the success of the tool in
practical settings.

5.4 Results and discussion

Recall that we had six major questions we wanted to address in this study. In addressing
the first question, we observed quite a few web applications that rendered and behaved
properly in one environment yet were faulty in another (examples of this follow in
Figure 9). In addition, we have spoken to several individuals who have run across
such problems in very frustrating situations. Subsequently, client-configuration-specific
problems are a reality in many fielded web applications.

In the case of the second question, the results of this study showed that even with a
relatively small set of 200 instances, our approach of using the association vector
was successful at detecting client-configuration-specific tag support issues in fielded
web applications. In addressing the third question, which dealt with the manual effort
involved in submitting examples, we learned that it takes a few seconds to report a
problematic web application and associated client configuration, indicating minimal
manual effort. Note that end-users are not responsible for indicating why an error
occurred; they merely submit faulty pages to ICE, hence the low amount of manual
effort. One key part of this approach is that it allows end-users using a given
configuration who have discovered a problem in their normal web navigation to help
improve the knowledge of supported and unsupported tags by merely submitting the raw
source code. With regard to the fourth question, classifying web applications returned by
the automated acquisition process as negative or positive took a few seconds. This
classification process mainly entailed loading the page, observing, and interacting with it
to ensure that it rendered and executed properly. In some cases, an unsupported tag with
non-visual effects could be included in the source code of a page that appeared to be a
positive instance. Such misclassifications served as the root cause for the occurrence of
false positives in certain inductive models.

 An empirical approach to evaluating web application compliance 21

In the case of the fifth question, which addresses the performance of the technique,
the inductive model that we created in this study yielded useful results. Given the data
generated in our study, we have shown that our approach rarely labels an unsupported tag
as supported in a given environment. While our model is promising, in principle, it is not
complete. This is largely because of two issues:

1 Information for every possible tag is not included in the association vector.

2 The tag information represented is not extensive.

Consequently, we observed the presence of false positives. We attribute these errors to
incomplete/inaccurate information. It is necessary that observations of positive and
negative web applications be large enough to draw accurate conclusions based on the
data seen. More web page instances containing new and previously discovered tags must
be identified and analysed.

The graph shown in Figure 8, which plots the rate of false positives as the training set
size grows, was generated to address the sixth and final question. As evident, the false
positive rate remains low for each of the environments. This, of course, is a promising
result since this indicates that the approach we use has a low incidence of labelling an
unsupported tag as supported in a given environment. One issue, however, is what
appears to be fluctuating FPR values. Note, however, that this occurs at alternating points
in the graph. We attribute this to the fact that there are more negative examples for the
training sets with 75, 125 and 175 examples. When the training set was 75, as an
example, there were 38 negative examples and 37 positive examples. Taking this into
consideration, it appears as if the FPR trend continues down as the training set grows, for
every other data point. More specifically, the false positive rate generally decreases from
50 to 100 to 150 and from 75 to 125 to 175. Subsequently, we can conclude from the data
that the results improve as the training set grows and that the false positive rate
is best when there are more negative examples than positive examples.

Figure 8 False positive rate with respect to training set size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

50 75 100 125 150 175

Number of web pages observed

Fa
ls

e
po

si
tiv

e
ra

te

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16

 22 C. Eaton and A.M. Memon

Web application evaluation

Finally, we were ready to use the inductive model to evaluate a new set of web
applications. We chose 12 popular web applications as our subject applications. Note that
these applications were not part of our application pool used to create the model. They
are shown in Column 2 of Table 4. We found several problems with these applications.
The client configuration in which these applications did not execute correctly is shown in
Column 3 of Table 4; Column 4 shows one of the problematic tags for each.

Table 4 Evaluation results

URL Client Problematic tags

1 www.aidsreagent.org/ c2,4,6,…,16 <script language =
“JavaScript”>

2 www.radissonedwardian.com/aboutus/home.jsp c1 <…style = “height:…”>

3 www.jegsworks.com/demos/DemoDHTML/bghead.htm c5–16 <layer bgcolor = #>

4 students.washington.edu/siutai/index.shtml c2,4,6,…,16 <div onmouseover() = #>

5 members.dcn.org/ez112654/html/h51.html c5–16 <blink>

6 www.musiciansunion.org.uk/html/index.php c1,…,4,9,…,16

7 www.execlangser.com/ c1…,,4,9,…,16 <basefont face = #>

8 www.koko.gov.my/CocoaBioTech/Southern.html c1,…,4,9,…,16 <marquee>

9 www.sltrib.com/ c5–16 <ilayer bgcolor = #>

Screen-shots of some of these applications are shown in Figure 9. Each of the examples
featured in Figure 9 have visibly evident errors. Yet, as noted before, while an image of
web applications functioning in varied environments indicates the existence of problems,
the causes of such problems can only be identified with deeper analysis. Using our
technique, however, the missing menu elements in the far left corner of the NIH AIDS
Research & Reference Reagent Program web application can be attributed
to lack of support for the Javascript tags which specify properties of the menu items.
The ill-formatted Radisson Edwardian web page can be attributed to the fact
that Netscape 4.8 does not properly render the height value of the style attribute.
Moreover, the barely visible text on the Executive Language Services, Inc.
header can be associated with Opera’s non-support for the face attribute of
the basefont tag. One example in the table, however, namely the Musicians Union
Website (number 6 in the table), highlights the problem when screen-shots are not
enough to recognise errors. More specifically, the web application features ‘hotkey’
access to various tool components, yet this functionality is not available in Opera 6.0.
Our technique allows us to diagnose the root cause of this problem, namely a
lack of support for the accesskey attribute in client platforms which feature
Opera browsers. As noted in Table 4, several tags caused problems in multiple client
configurations. An example is the <div onmouseover()=#> tag that caused
problems in configurations c2,4,6,8,…,16. We expect that in some specialised instances, a
given tag will influence incorrect effects within client configurations that share an
environmental characteristic. In this particular case, each of the environments for which
<div onmouseover()=#> produced faulty results had Javascript disabled. In future
work, we would like to explore the nature of such instances. Recognising that such

 An empirical approach to evaluating web application compliance 23

similarities exist can effectively prune the search space utilised by queryData()
(Section 4.4) since the detection of such a tag would signal failure for all associated
browsing environments.

Figure 9 Examples of configuration-specific errors found in our study

No Javascript With Javascript

Internet Explorer 6.0 Netscape 4.8

Internet Explorer 6.0 Opera 6.0

http://www.aidsreagent.org/

www.radissonedwardian.com/aboutus/home.jsp

http://www.execlangser.com

 24 C. Eaton and A.M. Memon

6 Conclusions and future work

Successfully leveraging the ability of the web to reach a wide audience is complicated
by the varied client configurations used to interact with web content. Providing tools
capable of detecting client-configuration-induced faults is extremely important for
supporting universal reliability considering the gamut of browsing platforms in use. This
paper introduces an effective way to identify client-configuration-related problems
that could hinder users from fully exploring and interacting with the information and
services featured on a given web application. A new empirical technique based on
association vectors, each mapped to a formally defined client configuration, was
presented. Vectors evolve for specific environments as additional empirical data in the
form of correctly/incorrectly executing web applications on specific platforms become
available. The results of an empirical study showed that the approach is feasible and
useful. Several client configuration specific problems in fielded web applications were
discovered. Indeed there are, perhaps, several different approaches to this problem. This
paper only features one. In the future, we plan to evaluate other techniques to assess their
strengths and weaknesses.

Our main focus in this work was to derive knowledge of the tags that are and are
not supported in a given environment using examples of the pages themselves. The
results of this can be applied to a variety of situations. Doctor HTML as an example, or
a general parser, could be calibrated for a given environment that is able to assess
the compliance of a corresponding source code. However, this is not the crux of our
work. Our main goal has been to define an approach that would derive knowledge of tag
support rules from fielded examples. In particular, our objective was to generate these
rules so that parsers, like the one mentioned, would have an accurate, comprehensive
knowledge base during evaluation.

There are several directions for future research. For one, this paper provides an
exploratory look at this topic. In this particular phase of our research, we have explored
the effects of browser, browser version and operating system on web application
execution. In future endeavours, we wish to explore richer client platform descriptions as
well as identify causes for performance imbalance outside of HTML tags. The research
presented here establishes a basis for our work on an extensible foundation.

In addition, we intend to study approaches that guarantee that the sampling of
web applications is statistically fair so that we can rely on the reported frequency of
rare events. Second, the algorithms presented here represent our initial attempts to
effectively identify tag-related hindrances to web application correctness and to devise
a plan for inductively determining the tags that are unsupported in associated client
configurations. While we are fairly confident in the design we have incorporated
for evaluating compliance for individual web pages, we plan to expand the scope of
the learning algorithm with further investigation. For example, we want to be able to
analyse the effect of tag interactions on the classification of web applications as positive
or negative instances. More specifically, in some cases an unsupported tag may be
offset by a supported tag, causing an application that would otherwise be a negative
instance to render and execute properly. We would like to establish a reliable measure
of such occurrences and incorporate such information in the association vector.
Consequently, we will observe techniques employed in case-control studies (Lewallen
and Courtright, 1998; Pfeiffer and Morris, 1994; Seaman and Richardson, 2001; Holmes,
1997) in addition to specific techniques for determining the most significant features

 An empirical approach to evaluating web application compliance 25

(Lashkia, 2002; Smillie, 1976; Cox and Snell, 1974), alternative techniques for
determining causation (Martel, 2000; Vineis, 2003), and methods for handling conflicts
among data sets in order to identify other, perhaps more appropriate approaches to this
problem. Third, many of today’s web applications use Cascading Style Sheets (CSS)
to render content. We are extending our model to incorporate CSS. More specifically, the
gold standard that we are currently using for HTML tags also features CSS element
compliance data. Subsequently, we could apply CSS conditioning rules (analogous to the
HTML tag conditioning rules) and calculate coefficient correlation values for these
features in order to derive knowledge of CSS support in client configurations.

As we continue to study an increasing number of web applications and execute our
algorithms on larger data sets, we intend to address some ‘engineering’ issues. While, in
principle, our technique is able to handle dynamically generated web pages (i.e., a user
has to traverse the page via a browser, extract its source HTML and submit it to ICE), our
automated crawler handles only static pages (or those generated using parameters already
encoded in a URL).

Finally, while building knowledge bases by mass collaboration can greatly reduce
the time and cost of developing large knowledge bases, several issues surface as a result
including quality, consistency and relevance in submitted information; scalability of
learning algorithms; and motivation level of participants (Richardson and Domingos,
2003). Since the knowledge derived is heavily dependent on examples, it is important
that users categorise web applications accurately, that examples provide relevant bases
for inference, that the algorithm can handle a large number of contributions from
thousands of participants, and that users are properly motivated to participate. We will
address such issues in the future in order to maximise the potential of this system as a
whole, and the learning mechanism in particular.

Our long-term research plans include:

• Studying the effect of diverse server configurations on web application correctness;
for example, if the configuration of a server hosting a web application changes, then
what (if any) is the impact on the correctness of the hosted application?

• Studying the effect of client/server configurations on sequences of user interactions
with the application.

• Classifying the defects that are found by our technique; currently we cannot detect
non-tag related defects. For example, we cannot detect if a Javascript program in a
web application executes incorrectly in certain configurations.

All in all, by addressing the issues we have identified as future work and refining our
model, we believe that we can provide an extremely effective approach for detecting the
browsing-environment-specific issues that threaten universal usability.

Acknowledgements

The authors thank the anonymous reviewers of this paper whose feedback and
comments played an important role in reshaping the experimental results and analyses.
This work was partially supported by the David and Lucile Packard Foundation, the
American Association for the Advancement of Science (AAAS), the US National
Science Foundation under NSF grant CCF-0447864, and the Office of Naval Research
grant N00014-05-1-0421.

 26 C. Eaton and A.M. Memon

References

Bellettini, C., et al. (2005) ‘TestUml: user-metrics driven web applications testing’, SAC ’05:
Proceedings of the 2005 ACM Symposium on Applied Computing, New York, NY, USA:
ACM Press, pp.1694–1698.

Berghel, H. (1996) ‘HTML compliance and the return of the test pattern’, Communications of the
ACM, Vol. 39, No. 2, pp.19–22.

Brajnik, G. (2004) ‘Using automatic tools in accessibility and usability assurance processes’, LNCS
Proceedings of the 8th ERCIM Workshop on User Interfaces for All, Springer, pp.219–234.

Cox, D.R. and Snell, E.J. (1974) ‘The choice of variables in observational studies’, Applied
Statistics, Vol. 23, No. 1, pp.51–59.

Dávila-Nicanor, L. and Mejía-Alvarez, P. (2004) ‘Reliability improvement of web-based software
applications’, 4th International Conference on Quality Software (QSIC 2004), IEEE Computer
Society, pp.180–188.

Deshpande, Y. and Murugesan, S. (2001) ‘Summary of the Second ICSE Workshop on Web
Engineering’, SIGSOFT Software Engineering Notes, Vol. 26, No. 1, pp.76–77.

Eaton, C. and Memon, A. (2004a) ‘Evaluating web page reliability across varied browsing
environments’, Proceedings of the 15th IEEE International Symposium on Software
Reliability Engineering (ISSRE’04), Saint Malo, Bretagne, France.

Eaton, C. and Memon, A. (2004b) ‘Improving browsing environment compliance evaluations
for websites’, Proceedings of the International Workshop on Web Quality (WQ’04),
Munich, Germany.

Gaur, N. (2000) ‘Assessing the security of your web applications’, Linux Journal, Vol. 2000,
Issue 72es, Article no. 3; ISSN 1075-3583.

Hansen, S. (2002) ‘Web information systems: the changing landscape of management models and
web applications’, Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering, ACM Press, pp.747–753.

Holmes, J.H. (1997) ‘Discovering risk of disease with a learning classifier system’, International
Conference on Genetic Algorithms, Morgan Kaufmann, pp.426–433.

Huang, Y-W., et al. (2003) ‘Web application security assessment by fault injection and behavior
monitoring’, Proceedings of the Twelfth International Conference on World Wide Web, ACM
Press, pp.148–159.

Kallepalli, C. and Tian, J. (2001) ‘Measuring and modeling usage and reliability for statistical web
testing’, IEEE Trans. Softw. Eng., Vol. 27, No. 11, pp.1023–1036.

D.C. Kung, P.H. and Liu, C-H. (2000) ‘An object-oriented web test model for testing web
applications’, Proceedings. First Asia-Pacific Conference on Quality Software, pp.111–120.

Lashkia, G.V. (2002) ‘Learning with relevant features and examples’, International Conference on
Pattern Recognition, pp.68–71.

Lewallen, S. and Courtright, P. (1998) ‘Epidemiology in practice: case-control studies’, Community
Eye Health Journal, Vol. 11, No. 28, pp.57–58.

Lucca, G.A.D. and Penta, M.D. (2003) ‘Considering browser interaction in web application
testing’, Proceedings of the 5th International Workshop on Web Site Evolution, IEEE
Computer Society, pp.74–81.

Martel, I. (2000) ‘Probabilistic empiricism: in defence of a Reichenbachian theory of causation and
the direction of time’, Thesis, University of Colorado.

Ng, H.T., et al. (1997) ‘Feature selection, perception learning, and a usability case study for text
categorization’, SIGIR ’97: Proceedings of the 20th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, New York, NY, USA:
ACM Press pp.67–73.

Offutt, J. (2002) ‘Quality attributes of web software applications’, IEEE Software, Vol. 19, No. 2,
pp.25–32.

 An empirical approach to evaluating web application compliance 27

Pfeiffer, D. and Morris, R.S. (1994) ‘Comparison of four multivariate techniques for causal
analysis of epidemiological field studies’, Proceedings of the 7th International Symposium on
Veterinary Epidemiology and Economics, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., pp.165–170.

Ricca, F. and Tonella, P. (2001) ‘Analysis and testing of web applications’, ICSE ’01: Proceedings
of the 23rd International Conference on Software Engineering, IEEE Computer Society,
pp.25–34.

Ricca, F. and Tonella, P. (2005) ‘Web testing: a roadmap for the empirical research’, WSE, IEEE
Computer Society, pp.63–70.

Richardson, M. and Domingos, P. (2003) ‘Building large knowledge bases by mass collaboration’,
K-CAP ’03: Proceedings of the International Conference on Knowledge Capture, ACM Press,
pp.129–137.

Seaman, S.R. and Richardson, S. (2001) ‘Bayesian analysis of case-control studies with categorical
covariates’, Biometrika, Vol. 88, No. 4, pp.1073–1088.

Smillie, K.W. (1976) ‘Regression analysis: theory and computation’, Proceedings of the Eighth
International Conference on APL, pp.401–407.

Sneed, H.M. (2004) ‘Testing a web application’, Proceedings of the 6th International Workshop on
Web Site Evolution, IEEE Computer Society, pp.3–10.

Tonella, P. and Ricca, F. (2004) ‘A 2-layer model for the white-box testing of web applications’,
Proceedings of the 6th International Workshop on Web Site Evolution, IEEE Computer
Society, pp.11–19.

Vineis, P. (2003) ‘Causality in epidemiology’, Soz Praventiv Med, Vol. 48, No. 2, pp.80–87.

Xu, L., et al. (2003) ‘A browser compatibility testing method based on combinatorial testing’,
International Conference on Web Engineering, Springer, pp.310–313.

Xu, L., et al. (2005) ‘Testing web applications focusing on their specialties’, SIGSOFT Softw. Eng.
Notes, Vol. 30, No. 1, p.10.

Xu, L.X.B. (2004) ‘A framework for web applications testing’, International Conference on
Cyberworlds, pp.300–305.

Yang, Y. and Pedersen, J.O. (1997) ‘A comparative study on feature selection in text
categorization’, ICML ’97: Proceedings of the Fourteenth International Conference on
Machine Learning, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp.412–420.

Notes

1 http://www.netmechanic.com/browser-index.htm

2 http://www2.imagiware.com/RxHTML/

3 http://www.watchfire.com/products/Webxm/bobby.aspx
4 http://en.wikipedia.org/wiki/Web_application
5 http://www.w3.org/QA/Tools/
6 http://www.w3.org/2001/di/

