
Using Methods & Measures from Network Analysis for GUI Testing

Ethar Elsaka, Walaa Eldin Moustafa, Bao Nguyen, Atif Memon

Department of Computer Science

University of Maryland

College Park, MD, USA

Email: (ethar|walaa|baonn|atif)@cs.umd.edu

Abstract—Graphical user interfaces (GUIs) for today’s ap-
plications are extremely large. Moreover, they provide many
degrees of freedom to the end-user, thus allowing the user
to perform a very large number of event sequences on the
GUI. The large sizes and degrees of freedom create severe
problems for GUI quality assurance, including GUI testing. In
this paper, we leverage methods and measures from network
analysis to analyze and study GUIs, with the goal of aiding
GUI testing activities. We apply these methods and measures
on the event-flow graph model of GUIs. Results of a case study
show that “network centrality measures” are able to identify
the most important events in the GUI as well as the most
important sequences of events. These events and sequences
are good candidates for test prioritization. In addition, the
“betweenness clustering” method is able to partition the GUI
into regions that can be tested separately.

Keywords-GUI testing, event-flow graphs, network analysis,
test prioritization, software testing, network centrality, be-
tweenness clustering.

I. INTRODUCTION

Testing is widely recognized as a key quality assurance

(QA) activity in the software development process. Research

in testing has received considerable attention in the last

two decades [5]. This paper focuses on system testing of a

software that has a graphical user interface (GUI) front-end

[10]. A software with a GUI front-end consists of two parts:

(1) the underlying code that implements the “business logic”

and (2) the GUI front-end that facilitates user interaction

with the underlying code. A software user interacts with

the GUI by performing events, such as button clicks, menu

selections, and text inputs. The GUI uses the input events to

interact with the underlying code via messages and method

invocations.

During GUI testing, test cases, modeled as sequences of

events are executed on the GUI and its output is compared

to an “expected output.” The goal of GUI testing is to reveal

GUI faults (defined as one that manifests itself on the visible

GUI at some point of time during the software’s execution).

Although the test cases interact only with the GUI interface,

and the expected output consists only of GUI elements,

Brooks et al. [2] have shown that a large proportion of faults

detected by this type of testing are in the underlying business

logic of the application, rather than in the GUI code itself.

Several techniques have been developed for GUI testing.

One of the most successful model-based techniques is based

on Event-Flow Graphs (EFGs) [9]. Although EFGs may be

used to generate test cases that detect many GUI faults, these

graphs are very large, and they yield an extremely large

test suite. They also make it difficult to target testing to

select parts of the GUI, and perform operations such as test

selection and prioritization.

In this paper, we leverage methods and measures from

the network analysis domain to analyze and study EFGs,

with the goal of aiding GUI testing activities. In particular,

we use the “network centrality measures” and “betweenness

clustering” method. Adopting a network analysis- based

approach for GUI testing is a new area of research. We

illustrate our approach on a small GUI and then conduct a

case study on a large GUI subject called TerpPresent, which

is part of the TerpOffice [15] application suite developed by

the University of Maryland students. Our results show that

“network centrality measures” are able to identify the most

important events in the GUI as well as the most important

sequences of events. One application of this identification

is that these events and sequences may be used for test

prioritization; another is that maintenance of these events

can be done more carefully than that of others. In addition,

the “betweenness clustering” method is able to partition the

GUI into independent regions; events in each region can, for

example, be tested separately.

The rest of the paper is structured as follows. In the next

section, we present an overview of network measures and

methods that we use in this paper. In Section III, we discuss

their application to a small GUI example. In Section IV,

we provide our case study along with the results and their

discussion. In Section V we discuss related work. Finally,

we conclude the paper and discuss our plans for future

extensions in Section VI.

II. OVERVIEW OF SOME NETWORKING METHODS &

MEASURES

In network analysis, ranking measures are widely used

to reveal information regarding important entities in net-

works, such as nodes and edges. Ranking methods include

PageRank [1], and Hubs and Authorities [7], which are

more common in the hyperlinked WWW ranking domain.

Third International Conference on Software Testing, Verification, and Validation Workshops

978-0-7695-4050-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSTW.2010.61

240

Other importance measures include degree centrality and

betweenness centrality [3].

On the other hand, clustering approaches divide the net-

work into partitions such that entities in each partition are

similar or close to each others with respect to a certain

property. This property can be graph-structural (e.g., based

on graph connectivity) or a local property of each entity

that does not have to do with the graph structure. For

example, in social networks, clustering based on topological

aspects is known as finding community structure as it finds

communities that have relatively dense interlinks inside

them, with low number of crossing links between them.

Examples of algorithms with that goal are Girvan-Newman

algorithm [4] which is based on edge betweenness centrality,

and algorithms that are based on modularity such as [11].

A. Betweenness Centrality

Betweenness centrality is an importance measure that can

be defined for both nodes and edges. Node betweenness

centrality indicates that a node lies on many shortest paths

between pairs of nodes, and hence, using short paths, it

connects together nodes from the graph that would be

otherwise distant. Formally, node betweenness is calculated

using the following formula: C(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

,

where σst is the number of shortest paths from s to t,

and σst(v) is the number of shortest paths from s to t

that pass through a vertex v. Similarly, edge betweenness

centrality is a measure of edge importance, and is calculated

by considering the shortest paths that run through that edge.

B. Edge Betweenness Clustering

Edge betweenness clustering finds partitions by finding

crossing edges, i.e., edges that are least central inside com-

munities but are important in linking between communities.

Therefore, this method starts with calculating the between-

ness centrality of all the graph edges, and removes the edge

with the highest centrality. The new centralities of the edges

are recomputed and the operation of removing the highest-

centrality edge is repeated, until the graph is disconnected

to the desired number of partitions.

In this paper, we argue that betweenness centrality mea-

sure is appropriate for GUI testing and can be used ef-

fectively for finding important widgets, events, and event

sequences for testing, and additionally we argue that edge

betweenness clustering is a suitable method for partitioning

the GUI EFG for smaller parts that can, for example, be

tested individually.

III. APPLYING BETWEENNESS RANKING AND

CLUSTERING TO EFGS

By applying the measures discussed above on a GUI

event flow graph, insights can be made to uncover hidden

important GUI elements or event sequences. Since nodes

Figure 1. Example application

correspond to events and edges correspond to event se-

quences in EFGs, ranking the events by their betweenness

centrality results in the most important events in the sense

that they are central to the GUI, and will be used often to

reach from one part of the GUI to the other. Similarly, by

ranking the EFG edges according to their edge betweenness

centrality, not only single event importance is highlighted,

but also importance of pairwise event sequences, which in

turn can be generalized to higher length-sequences, so that a

group of subsequent events are identified to be the main pipe

through which the state of the application is transferred from

one GUI part to another. Such event sequences are important

to stress on during software development and testing, as they

will likely hold most of the GUI state information and its

transformation.

On the other hand, betweenness-clustering the event flow

graphs is a means to break down the GUI into smaller

units that are relatively cheaper to process and analyze,

without worrying much about the interaction of these smaller

units with each others, as the interaction is minimal, as

given from the definition of the betweenness clustering.

Another advantage of using betweenness clustering is that

using it does not impose much overhead on the overall

process, as the edge centralities will be calculated in order to

rank the event sequences as we discussed above. Therefore,

this computation can be utilized in finding the initial set

of crossing edge candidates. For subsequent iterations, an

incremental method can be used so that it takes into con-

sideration changing only the centralities of the edges that

have been affected by the removal of the edge selected in

the previous iteration, keeping the re-computation overhead

to a minimum.

241

A. Example

To illustrate our proposed method, we use a small example

application and walk through the analysis using its EFG.

The example application is for a simple editing program that

consists of three windows, one Main window, a Open File

window, and a Find window. Open File is a modal window,

i.e., it restricts the user to the set of events in the window,

until it is explicitly terminated. Find, on the other hand, is a

modeless window, i.e., it allows the user to perform events

outside the window, even when it is open. The three windows

are shown in Figure 1. The main window has a main menu

with two menu items, each opens one of the other two sub

windows. The main window also has an edit box, and a

close button. The first sub-window, the Open File window,

is loaded when the Open menu item is selected from the

main menu. It has two text boxes, and a third box that is

enabled only if its corresponding option Network path is

selected. Additionally, this window has an OK button. The

second sub-window, or the Find window, has a text box and

an OK button. All of the three windows include a close

button.

An EFG is a specific model of the GUI for a particular

application, representing all possible sequences of events

that a user can execute on that GUI. Nodes in the EFG

represent events, and directed edges represent the event-

flow relationship between two events. That is, an edge

in the graph from event e1 to e2 indicates that event e2

may be invoked immediately after event e1. The predicate

follows(e2, e1) represents this relationship and denotes that

e2 follows e1. EFGs are potentially cyclic, since events can

typically be executed more than once during a session with

an application.

The EFG of our application is shown in Figure 2. Note

that events in the Open dialog cannot be preceded or

followed by events from other widows because it is a modal

window. On the other hand, most of the events in the other

windows can interact, i.e., they have edges between them,

because the Find window is modeless.

By applying the above measures on this example network,

a set of interesting results can be found:

• Event ranking: The ranking of events according to

their betweenness centrality score is shown, in sorted

order, in Table I, where each widget (Column 2)

is shown along with its rank (Column 1) and score

(Column 3).

By inspecting the rankings we make the following

observations:

– Open-window-Close-button has the highest rank

because it is the crossing point between two main

windows in the application, and one of them is

modal. Therefore, the user cannot gain control over

the parent window except by pressing that button

first.

Table I
EVENT RANKING OF THE EXAMPLE APPLICATION

Rank Event Score

1 Open-window-Close-button 33.5
2 Open-window-Ok-button 27.2
3 Main-menu 10.1
4 File-name-textbox 2.2
5 Enable-Network-Path-checkbox 2.2
6 Find-window-Close-button 2.1
7 Main-window-Edit-box 2.1
8 Find-textbox 2.1
9 Main-window-Close-button 2.1

10 Find-button 2.1
11 Open-menu-item 1.6

– Open-window-OK-button has the second highest

rank after the Open-window-close-button. It has

similar properties to the close button but cannot be

reached directly after the Open-window is opened,

because there is a pre-condition that a file name is

entered first. Therefore, the paths that are passing

through it are not as many as the paths that pass

through the close buttons.

– Main-menu is the third because it is the cross

point from the application’s main windows to its

sub-windows. Its score is lower than the above

two because most of the paths that go through it

are not shortest paths. For example the user can

go directly from the Main-menu-Edit-box to the

application’s Close-button without having to go

through the Main-menu.

• Event sequence ranking: The ranking of events se-

quences according to their betweenness centrality is as

follows. We show only the top 20 in Table II. These

ranks show us that:

– The first rank is for going from Main-menu to

Open-menu-item. This is natural, because this ac-

tion makes the application transition to a modal

window, so it is the crossing line between two

major parts of the application.

– The sequences ranked from 2 to 10 are due to the

importance of their last events Open-window-Ok-

button and Open-window-Close-button.

– The sequences ranked 11 to 20 are due to the

importance of their first event, which is either

Open-window-Close-button and Open-window-Ok-

button.

• Clustering: We used betweenness clustering algorithm

as described in Section II-B, where we kept iterating

and removing edges until the graph was disconnected

to two partitions. The result was two clusters; one that

corresponds to the modal File-window, and another

cluster that corresponds to the two other windows,

Main-window and Find-window. This is useful because

the clustering was able to determine that these two

separate high level modules are, in fact, two different

242

Figure 2. Example application EFG

Table II
EVENT SEQUENCE RANKING OF THE EXAMPLE APPLICATION

Rank Sequence Score

1 Main-menu , Open-menu-item 11.3
2 Network-Path-textbox , Open-window-Close-button 9.9
3 Disable-Network-Path-checkbox , Open-window-Close-button 9.9
4 Enable-Network-Path-checkbox , Open-window-Ok-button 9.5
5 File-name-textbox , Open-window-Ok-button 9.5
6 Network-Path-textbox , Open-window-Ok-button 9.2
7 Disable-Network-Path-checkbox , Open-window-Ok-button 9.2
8 File-name-textbox , Open-window-Close-button 8.8
9 Enable-Network-Path-checkbox , Open-window-Close-button 8.8
10 Open-menu-item , Open-window-Close-button 8.3
11 Open-window-Close-button , Main-window-Edit-box 8.2
12 Open-window-Close-button , Find-button 8.2
13 Open-window-Close-button , Find-window-Close-button 8.2
14 Open-window-Close-button , Main-window-Close-button 8.2
15 Open-window-Close-button , Find-textbox 8.2
16 Open-window-Ok-button , Main-window-Edit-box 7.2
17 Open-window-Ok-button , Find-button 7.2
18 Open-window-Ok-button , Find-window-Close-button 7.2
19 Open-window-Ok-button , Main-window-Close-button 7.2
20 Open-window-Ok-button , Find-textbox 7.2

entities. If we try to break down the clustering to more

regions, by removing 25 edges, we get five clusters as

shown in Figure 2, where the clusters are surrounded

by rectangles. In this figure, we will find that each of

the Open-window-Ok-button, the Open-window-Close-

button, and the Open-menu-item are separated in their

own clusters because they are the cross points between

the first two big clusters.

With the above discussion, we can see the advantages of

using betweenness centrality measure in ranking events or

sequences of events, where these measures are useful for

two reasons: 1) they shed the light on important actions in

the GUI interaction graph that need more attention, and 2)

these point out actions that form a crossing point between

largely different application parts. Furthermore, betweenness

clustering provides a means to enable the study the sub-

parts themselves, because it can find out these somehow

independent parts, given the fact that the results of how

they are connected were already covered by node and edge

betweenness.

243

Figure 3. TerpPresent Screenshot

IV. CASE STUDY

To evaluate our approach, we now present a case study

using TerpPresent, a presentation software developed by

the students at the University of Maryland. We begin by

describing the application, then describe the tools used to

perform the study, and finally report the results.

A. Application

A screenshot of the application is shown in Figure 3.

TerpPresent has a main window with two main frames:

a frame for the main menu along with the toolbar and a

frame for the slide design workspace. The user accesses the

software functionality through the menu and the toolbar,

and uses the workspace frame to draw the presentation

components, which can be text, pictures, backgrounds, and

shapes. The user is allowed to select colors for text, pictures,

and shapes using a color window.

B. Tools

We reverse engineered TerpPresent’s GUI using the

GUITAR (http://guitar.sourceforge.net) software. The output

is two XML files. The first file describes the EFG of the

application, and the second file describes the widgets of the

application in terms of their name, type (class), their hierar-

chical level and other attributes. Using this file we can relate

the events in the EFG file to actual widgets that the user sees

when running the application. We read the graph structure

from the EFG and use JUNG API (jung.sourceforge.net),

which is a scientific Java API for analyzing and visualizing

different kinds of graphs, to analyze the TerpPresent EFG

and output our three measures of interest.

C. Results and Discussion

In this subsection we discuss the results we got by ranking

the events, sequence of events, and performing clustering.

EFG of TerpPresent contains 459 nodes and 2262 edges.

Analyzing the EFG using JUNG on a machine with Intel

Table III
EVENT RANKING OF TERPPRESENT

Rank Event Widget Score

1 Slide-workspace 61220.1
2 Main-menu-bar 61220.1
3 Font-menu-item 21741.3
4 Help-menu 14994
5 About-menu-item 14994
6 Color-window-Ok-button 10769.1
7 Color-window-Close-button 10769.1
8 File-menu 1836.5
9 Text-menu-item 356.1
9 Scale-menu-item 309.2
9 Background-menu-item 295.3

Core 2 Duo CPU @2.26 GHz and 4 GB of RAM takes

10 seconds for performing each of event ranking, sequence

ranking and edge betweenness clustering.

Ranking events results are shown in Table III. We discuss

them next:

• The first rank is for the main frame where the slides

are drawn and designed. This coincides with the fact

TerpPresent is a presentation software where most of

its widgets and options are designed to serve this main

frame and interact with it.

• The second rank is for the Main-menu-bar. This also

coincides with the fact that the main menu bar is the

widget through which all of the program options and

functionalities can be reached.

• Thirdly comes the Font-menu-item. Naturally, selecting

and setting fonts is one of the most important function-

alities in a presentation software.

• Fourth comes the Help-menu-item. This menu item

is not central to a presentation software in terms of

functionality. However, it is important from the point

of view that it leads to many help pages that cannot

be reached otherwise. Similar is the case of the About-

menu-item that opens another modal window with three

tabs and several widgets.

• Afterwards comes the OK and Cancel buttons of the

Color-window. This is again a crucial feature of a

presentation software.

• Afterwards comes the menu File then the menu items

Text, Scale, and Background. Again these menus are

the hubs through which most of the application func-

tionality can be reached.

The rest of the rankings have a very low score and

therefore we do not discuss them.

Sequence rankings where affected by the existence of

Help and About menus as one of the top important widgets.

Therefore we disregarded the Help-and-About-related event

sequences from the top ranking and found that the top event

sequences are as shown in Table IV. We discuss them in the

following bullets:

• Clicking OK or Cancel in the Color-window then

244

Table IV
EVENT SEQUENCE RANKING OF TERPPRESENT

Rank Sequence Score

1 Color-window-Ok-button , Slide-workspace 3835.0
2 Color-window-Cancel-button , Slide-workspace 3835.0
3 Color-window-Ok-button , Main-menu-bar 3835.0
4 Color-window-Cancel-button , Main-menu-bar 3835.0

working inside the main slide work frame, which stems

from the fact that this sequence is the switch between

two major application components, which are the color

window and the slide work space.

• The next couple of sequences is clicking OK or Cancel

in the Color-window then selecting a menu in the menu

bar, which again connects two of the most important

application components.

For the clustering results, we got three main clusters: the

cluster of the color window widgets, the cluster with the

“About TerpPresent” options, as it includes three tabs and

other widgets such as text areas and scroll bars that are only

reachable from the About-menu-item, and the last cluster was

with the rest of the application’s widgets.

As we mentioned earlier, the results suggest that there are

components of the TerpPresent application that are more

sensitive and important, such as the slide work space, the

main menu bar, the color window and the font selection

window. The results show that transitioning scenarios be-

tween these components should be taken more into account

in testing and development, and furthermore, as we will

discuss in Section VI for future work, according to these

components relative importance, test case priortization can

be accomplished using their relative rankings.

V. RELATED WORK

There is a growing interest among software engineering

researchers in applying network analysis techniques and

their metrics for software engineering tasks. There are

many forms where different information available from

the software engineering process can modeled as a social

network, where relationships take place between developers,

developers and software, or otherwise. In this section we

discuss some of the related work in the literature, where

network analysis played a crucial role in promoting software

development, reliability and management.

In [16], the authors study the collaborative nature of open

software development from a network analysis perspective.

They use SourceForge as a case study where they model

developers as actors in the network, and a link between

two developers denotes that they collaborated on at least

one project. They analysis results show that the graph

degree distribution is heavily skewed, which suggests that

collaborations do not occur in random; however, there is

a preferential attachment pattern, which can be explained

by the fact that developers tend to join successful projects

which in turn attracts more developers.

Relationship between developers and source code have not

only been considered on the project level, but also on the

code artifacts level. In [8], the authors utilize information

obtained from CVS repositories to get insights about the

internal structure of software projects. They use two types

of networks. The first type is committer networks, where

nodes denote developers and links between two developers

denote the fact that they contributed to at least one common

module. And the second type of networks is the module

networks, where the nodes denote modules and links denote

the existence of at least one committer who contributed to

both of them.

In [12], the authors use networks of developers and

projects as a tool for helping developers who want to seek

experience and direct questions to other developers. The

tool visualizes developer-developer networks, and project-

project networks, focusing on the similarities between the

vertices (similarity is defined as the number of common

projects in developer-developer networks, and the number

of common developers in project-project networks). Using

visualization with the similarity metric helps finding most

related projects and developers who can answer questions

from similar projects or domains.

In [14] the authors empirically investigate the relationship

between the fragmentation of developer contributions and

the number of post-release failures, by representing the

contributions as relationships between developers and mod-

ules in developer-module networks. They find that central

binaries are more likely to be failure-prone than binaries

located in surrounding areas of the network. They employ

this correlation to show that error prone modules can be

predicted by making use of advanced network centrality

measures.

In [17], the authors compare the usage of code complexity

measures versus network measures as an indicator of future

software defects. Network measures are applied on the

module dependency graph, while code complexity measures

are obtained from modules separately and include measures

such as the number of lines, methods, or classes in the source

code. They found that network measures correlate positively

with the number of post release defects, and can be used to

predict their number.

To our knowledge no previous work models the GUI

structure as a network or performs analysis on such a

network to obtain insights about the GUI.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described a novel technique for utilizing

well established network measures for GUI testing. We

exploit the fact the GUI interactions can be modeled as

a graph, and used network analysis to reveal interesting

insights from this graph. The measures we used are node

245

betweenness centrality, edge betweenness centrality and be-

tweenness clustering. Future work involves expanding the set

of network measures we employ to study the performance

of other ranking methods such as PageRank, or Hubs and

Authorities. We also plan to perform a comparative study

to compare the performance of various network measures

with existing techniques for ranking GUI events, enriching

the input EFG with more information that can lead to more

interesting results. Methods of enriching the input graph

involve giving weights to the events or edges between events

to indicate how likely they occur in an actual scenario,

or how crucial they are to the application functionality. A

motivating example for this is what happened with the Help

menu. It ranked highly in our results because it leads to a

big group of pages that cannot be reached otherwise. By

decreasing the weight of the Help menu in the input graph,

we can get results where this menu does not rank so highly.

Other directions for future work include performing test case

generation and prioritization using the ranking results, by

combining sequences of highly ranked events so that they

form a complete test case. We will compare the performance

of employing network analysis with other systems that

perform test case generation and prioritization. For test

case generation, we will compare with other model-based

approaches such as [13], and for test case prioritization, we

will compare with weight-based approaches such as [6].

ACKNOWLEDGMENTS

This work was partially supported by the US National Sci-

ence Foundation under NSF grants CNS-0855055 and CCF-

0447864 and the Office of Naval Research grant N00014-

05-1-0421.

REFERENCES

[1] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks and ISDN
Systems, 30(1-7):107–117, 1998.

[2] P. Brooks, B. Robinson, and A. M. Memon. An initial
characterization of industrial graphical user interface systems.
In International Conference on Software Testing, Verification
and Validation, pages 11–20, 2009.

[3] L. C. Freeman. A Set of Measures of Centrality Based on
Betweenness. Sociometry, 40(1):35–41, 1977.

[4] M. Girvan and M. E. J. Newman. Community structure
in social and biological networks. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
99(12):7821–7826, June 2002.

[5] M. J. Harrold. Testing: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering,
pages 61–72, New York, NY, USA, 2000. ACM Press.

[6] C.-Y. Huang, J.-R. Chang, and Y.-H. Chang. Design and
analysis of gui test-case prioritization using weight-based
methods. Journal of Systems and Software, 83(4):646 – 659,
2010.

[7] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604–632, 1999.

[8] Luis, G. Barahona, and G. Robles. Applying social network
analysis to the information in cvs repositories. In Proceedings
of the Mining Software Repositories Workshop. 26th Interna-
tional Conference on Software Engineering, 2004.

[9] A. M. Memon and Q. Xie. Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving software.
IEEE Transactions on Software Engineering, 31(10):884–896,
2005.

[10] B. A. Myers. User interface software tools. ACM Transactions
on Computer-Human Interaction, 2(1):64–103, 1995.

[11] M. E. J. Newman. Modularity and community structure in
networks. Proceedings of the National Academy of Sciences,
103(23):8577–8582, June 2006.

[12] M. Ohira, N. Ohsugi, T. Ohoka, and K.-i. Matsumoto. Accel-
erating cross-project knowledge collaboration using collabo-
rative filtering and social networks. SIGSOFT Softw. Eng.
Notes, 30(4):1–5, 2005.

[13] A. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A. M. Vidal.
Modeling and testing hierarchical guis. In Abstract State
Machines, pages 329–344, 2005.

[14] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-
module networks predict failures? In SIGSOFT ’08/FSE-
16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages
2–12, New York, NY, USA, 2008. ACM.

[15] Terpoffice. http://www.cs.umd.edu/ atif/newsite/terpoffice.htm,
2010.

[16] G. von Krogh and S. Spaeth. The open source software phe-
nomenon: Characteristics that promote research. J. Strateg.
Inf. Syst., 16(3):236–253, 2007.

[17] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. In ICSE ’08:
Proceedings of the 30th international conference on Software
engineering, pages 531–540, New York, NY, USA, 2008.
ACM.

246

