
1

SITAR: GUI Test Script Repair
Zebao Gao and Zhenyu Chen, IEEE Member

Yunxiao Zou and Atif M. Memon, IEEE Member

Abstract—System testing of a GUI-based application requires that test cases, consisting of sequences of user actions/events,
be executed and the software’s output be verified. To enable automated re-testing, such test cases are increasingly being coded
as low-level test scripts, to be replayed automatically using test harnesses. Whenever the GUI changes—widgets get moved
around, windows get merged—some scripts become unusable because they no longer encode valid input sequences. Moreover,
because the software’s output may have changed, their test oracles—assertions and checkpoints—encoded in the scripts may
no longer correctly check the intended GUI objects. We present ScrIpT repAireR (SITAR), a technique to automatically repair
unusable low-level test scripts. SITAR uses reverse engineering techniques to create an abstract test for each script, maps it
to an annotated event-flow graph (EFG), uses repairing transformations and human input to repair the test, and synthesizes
a new “repaired” test script. During this process, SITAR also repairs the reference to the GUI objects used in the checkpoints
yielding a final test script that can be executed automatically to validate the revised software. SITAR amortizes the cost of human
intervention across multiple scripts by accumulating the human knowledge as annotations on the EFG. An experiment using
QTP test scripts suggests that SITAR is effective in that 41–89% unusable test scripts were repaired. Annotations significantly
reduced human cost after 20% test scripts had been repaired.

Index Terms—GUI testing, GUI test script, test script repair, human knowledge accumulation

F

1 INTRODUCTION

A significant problem with test automation of soft-
ware applications with a Graphical-User Interface
(GUI) front-end is that an unacceptably large number
of tests may become unusable each time the software
is modified [1], [2], [3]. Yet, GUI testing is unavoidable:
when the only means of interaction with a software
is its GUI, system testing, i.e., testing the software as
a whole [4], requires it be tested with its GUI. A GUI
test case consists of sequences of user actions/events that
are executed on the software via its GUI widgets, and
checkpoints that determine whether the software exe-
cuted correctly. Such system tests are tightly coupled
with the GUI’s structure, i.e., they refer to specific
widgets in the GUI and encode sequences (“First click
on the File menu, then click on Open menu-item, then select
a file, and click on the Open button”) that are allowed
by the GUI’s workflow.

• Zebao Gao was previously at the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing, China. He is
currently a PhD student at the Department of Computer Science,
University of Maryland, College Park, MD, USA.
E-mail: gaozebao@cs.umd.edu

• Zhenyu Chen, the corresponding author, is with the State Key Labo-
ratory for Novel Software Technology, Nanjing University, Nanjing,
China.
E-mail: zychen@nju.edu.cn

• Yunxiao Zou was previously at the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing, China. He is
currently a PhD student at the Department of Computer Science,
Purdue University, West Lafayette, IN, USA.
E-mail: zou41@purdue.edu

• Atif M. Memon is with the Department of Computer Science, Univer-
sity of Maryland, College Park, MD, USA.
E-mail: atif@cs.umd.edu

During maintenance, if the GUI changes, some
tests become unusable either because (1) the event
sequences they encode are no longer allowed on the
modified GUI or (2) their checkpoints (assertions) no
longer correctly check the intended GUI objects.

Unusable test cases are not problematic when GUI
testing is done manually. Human testers execute the
test cases as per a test plan and manually verify the
correctness of the output [5]. If what they see on the
GUI differs from what the test plan describes, they are
often able to use common sense about simple changes,
deduce whether they have encountered a bug or a
deliberate change, and, if needed, revise the test plan.

In contrast, unusable test cases are a significant
problem for automation. If an automated test harness
encounters anything (an unexpected screen, a wid-
get) different from what it expects, it simply fails or
hangs. While automation is desirable because scripted
tests can be run many times, its benefits are quickly
dwarfed by high maintenance costs when large num-
bers of tests become unusable and require re-coding
or re-recording [1] each time the GUI is modified.

In previous work, we partially dealt with the prob-
lem of unusable test cases. However, we only focused
on high-level model-based test cases, represented
as abstract events, not as scripts. Originally gener-
ated automatically using model-based approaches [6],
some of these test cases in our previous work became
unusable due to software modifications. We repaired
these model-based test cases [1] by developing a new
technique based on “repairing transformations” that
matched unusable model-level test cases and trans-
formed them into new usable model-level test cases.

Repairing model-based test cases has limited prac-



2

tical value in an Industry that relies largely on manu-
ally scripted and captured test cases. Most GUI tests
used in Industry are coded as scripts (e.g., VBScript)
or manually recorded to be automatically replayed
by test harnesses/tools (e.g., HP QuickTest Profes-
sional (QTP), Selenium [7], [8]). These scripts suffer
from maintenance problems and need to be repaired.
Repairing scripted test cases is very important and
relevant because they are usually based on carefully
crafted use cases and functional requirements. Human
testers invest valuable time transcribing their domain
knowledge and experience into the test scripts and
checkpoints to comprehensively cover business logic,
making the scripts complex and valuable.

Unfortunately, our previous technique [1] does not
directly apply to manually scripted test cases for
a number of reasons. First, the model—event-flow
graph (EFG) [6]—that formed the basis for the repair
was inadequate as it lacked vital information (e.g.,
state, annotations) needed for script repair. Second,
the way we obtained the EFGs from the GUIs (using
reverse engineering via GUI Ripping [9] based on
depth-first traversal) was too limiting. GUI Ripping
is based on dynamic analysis, and hence suffers from
incompleteness inherent in such analyses, leading to
partial EFGs. We cannot use partial EFGs for script re-
pair because many times, these scripts contain events
absent from partial EFGs. Our previous work did
not suffer from this limitation because our model-
based test cases themselves were obtained from these
partial models [1] – there was no possibility of them
containing events absent from the models. Third, we
had assumed perfect knowledge of the GUI’s changes.
In practice, such knowledge is not always available,
making our previous “perfect repairing transforma-
tions” unusable. Fourth, we had completely ignored
the test oracles – assertions and checkpoints, that form
a vital part of test scripts as they determine whether
a test case passed or failed. Fifth, we had developed
only 4 transformations to address a limited number
of GUI changes. Finally, our prior tools worked only
at model level, not the script level. GUI test scripts
are coded using very low-level method-like calls,
e.g., Window(“PMS”).Button(“Add”).Click to click on
the “Add” button in the window entitled “PMS.”
We lacked mechanisms to automatically abstract such
scripts to the model level required by our transforma-
tions and synthesize low-level repaired scripts from
the models.

In this paper, we present ScrIpT repAireR (SITAR),
a technique to repair unusable low-level test scripts.
SITAR works by elevating the level of abstraction of
unusable test scripts—from script language level to
model level—applies model-based repairing transfor-
mations to obtain model-level usable test cases, and
then synthesizes new low-level usable scripts. To per-
form the repair, it relies on imperfect and inaccurate
EFG models of the GUIs, as well as human input.

More precisely SITAR takes as input an applica-
tion under test (AUT) A0 with its incomplete and
imprecise automatically reverse engineered EFG G0,
the AUT’s modified version A1 with its incomplete
and imprecise EFG G1, and test suite TS0 (including
assertions/checkpoints of graphical outputs) created
for A0. SITAR identifies ts0 ⊆ TS0 of test cases that
are no longer usable for A1, and hence are candidates
for repair. SITAR uses repairing transformations and
human input (as annotations) to repair test cases in
ts0 that can execute and satisfy assertions on A1.

Our exemplar system for experimentation with
SITAR is QTP [7] that provides functional and regres-
sion test automation. Our experiment involved 370
QTP test scripts containing a total of 13,043 events and
1,224 checkpoints obtained by more than 200 testers
on 3 software applications. We used 2 versions of
each application. The changes to the software made
all test scripts unusable for 2 applications. We show
that up to 89% of the scripts were repaired by SITAR.
The resulting line coverage of the scripts for one
application went up from 0% to 68.3%. We show
that annotations help to reduce human involvement
dramatically after 20% test scripts have been repaired.

Our study also serves to illustrate 3 important
points: (1) manually created test cases often have con-
siderably more coverage over the applications than
automated reverse engineering techniques (Table 10),
(2) SITAR successfully repairs test cases (tables 11 and
12) without breaking the business logic of the original
test cases (Table 13), and (3) by accumulating human
input as assertions in the model, SITAR achieves better
automation over the lifetime of the overall repair
process (figures 10 and 11).

In designing SITAR, we make the following research
contributions.
• Mechanisms to use an incomplete/inaccurate au-

tomatically reverse-engineered EFG together with
human input to repair complex test scripts while
retaining the scripts’ ability to test the AUT’s
business logic.

• Mechanisms to handle repairs without perfect
knowledge of the GUI and its changes. Based
on the existing EFG approximation, the repair
suggestions are automatically given to human
testers who then select the most applicable repair
transformation.

• Mechanisms to incorporate and accumulate hu-
man input into the overall process which accel-
erates the process and produces a more accurate
EFG model.

• Mechanisms to repair object references in check-
points. Most of the checkpoints remain valid in
the repaired scripts, which shows the business
logic encoded in the original test scripts persists
after the repairs.

• New annotations in the EFG to facilitate repairs.
Specifically, we introduce a new dominates an-



3

notation on edges.
• Mapping between code and model level to realize

translation from code to model and vice versa.
• Output an annotated EFG model of the AUT that

is more accurate than the one obtained automat-
ically via reverse engineering. These annotations
take the form of events/edges confirmed/added
by a human tester. The accurate EFG accelerates
the repairing process as well as has the potential
to improve test generation and repair for later
versions of the AUT.

2 RELATED WORK

Our work on SITAR has roots in two previously
reported techniques [1], [5] that laid the foundations
for GUI test repair and script maintenance. The idea
of test repair was originally developed by Memon
et al. [10]. The approach reported therein fully au-
tomatically classifies usable and unusable test cases.
The unusable test cases are fully automatically further
classified as repairable or not. Repairing transforma-
tions are developed to fully automatically repair the
test cases. Because of their focus on full automa-
tion, the work made a number of assumptions about
the EFG models, test cases, and modifications. The
EFGs were assumed to be complete and precise; the
test cases were assumed to be composed of high-
level events only from the set in the EFGs, without
checkpoints or assertions; and all modifications were
assumed known. These assumptions do not hold for
test scripts that are created manually. The scripted
test cases may contain certain events absent from the
EFGs, which are prone to incompleteness. Test scripts
have checkpoints useful for functionality verification.
And GUI modifications from one version of a software
application to its next version are rarely fully docu-
mented precisely. Our current work, SITAR, sacrifices
full automation but works in a more realistic setting
by eliminating these assumptions.

The work on test script repair was done by
Grechanik et al. [5], in which they automatically iden-
tify changes between GUI objects and locate test script
statements that reference the modified GUI objects [5].
Their tool pops up warnings that enable testers to fix
errors in test scripts manually. However, the repairs
are done manually.

Several researchers build upon the work on GUI
test repair. We ourselves have extended the overall
repair process to one driven by combinatorial cov-
erage and genetic algorithms to yield GUI specifi-
cations [11]. Daniel at al. [3] propose a white-box
approach where GUI changes, specifically GUI refac-
torings, are recorded and later used to repair the test
cases. They envision the use of a smart IDE that will
record these changes precisely as they happen and
will use them to change the GUI code and to repair
test cases. Fu et al. [12] proposed a type-inference tool,

named TIGOR, for GUI test scripts, which can work as
an assistant of testers to determine type errors of GUI
scripts by static analysis. The big difference between
our work and theirs is that we do not purely focus
on type of objects, but also various kinds of errors
like deletion, addition or modification of widgets to
fix various kinds of errors in regression GUI testing.

Zhang et al. [13] develop a technique to auto-
matically repair broken workflows for evolving GUI
applications. They focus on replacement of invalid
user interface actions in the original user interface
workflows by dynamic profiling, static analysis, and
random testing. They evaluate their technique on 15
workflows from 5 applications.

Choudhary et al. propose WATER to suggest repairs
for broken test scripts of web applications [14]. Their
technique is based on differential testing; the behavior
of test cases is used to suggest the location of the
repairs. Leotta et al. [15] present an industrial case
study of web test suite repair in which they compare
the maintainability of selenium WebDriver test suites
by employing different locators, specifically ID or
XPath. Such an approach reflects the lack of compre-
hensive approach for test repair in industrial practice.
Alshahwan et al. [16] have presented an approach
to repair user session data that has become obsolete
due to modification of web pages. Using white-box
techniques, they map and locate changes between the
two versions and take repairing operations based on
the changes detected.

Mirzaaghaei et al. propose TestCareAssistant to au-
tomatically repair tests because of changes in method
declarations [17]. Their technique combines data-flow
analysis with program diffs. In later work, they coin
the term “test case adaptation” to support test suite
evolution [18] to repair test cases that do not compile
due to changes in the code and to generate new test
cases for evolved software. Mirzaaghaei has also ob-
served, and experimentally verified, that software de-
velopers follow common patterns to identify changes
and adapt test cases [19]. Mirzaaghaei envisions the
development of an automated approach that gen-
eralizes these patterns into a set of test adaptation
patterns that can automatically evolve existing test
cases and generate new ones.

Daniel et al. develop ReAssert [20] for test case
maintenance for unit tests. ReAssert maintains bro-
ken unit tests by changing assertions and updating
obsolete literal values by analyzing the run time en-
vironment of running the failing test case. In later
work, they “improve ReAssert for programs with
more complex control flow or operation by using
symbolic execution”[2].

Because of the difficulties that surround test repair,
Evans et al. propose a technique named differential
testing to alleviate the test repair problem and to re-
veal behavior changes during software evolution [21].
Differential testing creates test suites for the original



4

as well as the modified program and contrasts both
versions with the two suites. Other research that may
also aid in test repair is automated detection of API
refactorings in libraries [22] that automatically detects
refactoring between two versions of libraries based on
syntax analysis. Similarly, work on repairing defects
in the program, not test cases is also relevant [23].

Our work is unique in the sense that we also
repair the expected output (i.e., the test oracle) part
of the test cases. We leverage our earlier work [24],
[25] on test oracles to form the basis for the repair.
Also related is the work by Xie et al. who augment
automatically generated unit-test suites with regres-
sion oracle checking [26]. They show that test oracles
from previous version of software can be valuable in
detecting faults after software evolution. They collect
object states by executing test cases on the original
software, and use this information as oracles for the
augmented unit-test suites for the modified software.

Yang et al. [27] study the difference between ran-
dom testing and functional testing in GUI applica-
tions. They show the importance of human knowl-
edge in testing large applications via creating more
meaningful functional tests. Tests generated by man-
ual functional testing bring more challenges to test
repair, and at the same time, make our technique that
focuses on functional tests more valuable.

Finally, Pinto et al. present an excellent treatment
of the realities surrounding test-suite evolution and
maintenence [28]. They discuss various realistic use
cases in which test cases are added, removed, and
refactored in practice. They also point out that, differ-
ent from previous cases, test repair is more complex
and hard-to-automate and existing test-repair tech-
niques focusing on assertions may be inapplicable in
practice. This motivates us to repair real test scripts
which involves different types of changes and requires
domain knowledge to repair. We enhance the widely
used EFG model by storing human actions as new
nodes/edges/labels in the model to accelerate the
semi-automatic repair process.

3 OVERVIEW
We provide an overview of SITAR via a simple home-
grown example application called Project Management
System (PMS), used to create and manage projects;
project members may be added, edited and removed.
We show 3 dialogs of PMS version 1.0 in Figure 1. The
(leftmost) main window, entitled PMS, has two views:
(1) a default start screen (not shown) and (2) “General
Information of Project” screen (shown) that requires
the event sequence 〈File, Open Project〉 and selection
of a project from a dialog. In this view, a user may
add a new project member or remove an existing one.
Clicking on Add Member opens the (center) dialog.
PMS also contains a pull-down menu used to launch
other dialogs. For example, 〈File, Create Project〉 opens
the (rightmost) Create Project dialog.

The GUI enforces certain constraints. First, on the
main window, the button Remove Member is enabled
only when a project member (row) is selected. Second,
the Finish Member button in the Add Member dialog
remains disabled (Figure 1) until valid values are
entered for the Name and E-mail text fields.

Our test scripts for version 1.0 are shown in Figure 2.
Test script TS1 creates a new project, inputs values for
Title and Description, and clicks on the Finish Project
button. TS2 creates a new project member, inputs
Name, selects Character and inputs E-mail, finally click-
ing on the Finish Member button. TS3 opens a project,
removes the 2nd project member, and selects the
1st member for further actions. TS4 opens a project,
checks (cp1) whether it has 4 members, removes the
first member, adds information for a new member,
but before clicking on Finish Member, checks (cp2) if
3 members are displayed; and confirms (cp3) that 4
members are displayed after the button is clicked.
TS5 creates a new project entitled “newProject,” and
checks (cp1) whether the title was reflected correctly
on the GUI; it then adds a new member, checks
(cp2) whether the Character was reflected correctly on
the GUI, and checks (cp3) whether the number of
members is 1.

For ease of presentation, we have shown simple (yet
illustrative) test scripts. In practice, test scripts may
look more complicated. Instead of referencing widgets
by their names, widgets can be referenced by their
IDs or sequence numbers. For example, two button
with exactly the same label in the same window will
need to be distinguished by their sequence numbers.
In our examples, we avoid such complications; during
our mapping and repairing procedure, without loss
of generality, we address each widget only by its
label. We later generalize to addressing a widget by
its signature.

Our version 2.0 of PMS has two changes. First, the
Remove Member button now pops up a new confirma-
tion dialog (Figure 3); clicking on Yes is required to
actually delete the project member. Second, the data
field Character is renamed to Role. This changes the
column header in the leftmost window of Figure 1
and the text-label in the center dialog. It also changes
the way the Character field is accessed in the test
scripts. For example, in TS2, Line 4 refers to the Field
as “Character,” which is no longer correct; it needs to
be “Role.”

Our regression testing scenario is now ready. If we
execute all 5 test scripts on PMS version 2.0, TS1 will
execute correctly (provided that nothing else is broken
in version 2.0), TS2 will stop prematurely because the
Character field no longer exists. TS3 will hang because
it does not know how to handle the unexpected
confirmation dialog. TS4 will have problems because
of both changes, and TS5 accesses the Character field,



5

Fig. 1. 3 Windows in Version 1.0.

TS1

1 Window(“PMS”).Menu(“File”).Menu(“Create Project”).Select
2 Window(“PMS”).Dialog(“Create Project”).Field(“Title”).Set “projTest”
3 Window(“PMS”).Dialog(“Create Project”).Field(“Description”).Set

“To test creating a project”
4 Window(“PMS”).Dialog(“Create Project”).Button(“Finish Project”).Click

TS2

1 Window(“PMS”).Menu(“File”).Menu(“Open Project”).Select
2 Window(“PMS”).Button(“Add Member”).Click
3 Window(“PMS”).Dialog(“Add Member”).Field(“Name”).Set “Tao Lin”
4 Window(“PMS”).Dialog(“Add Member”).Field(“Character”).Set “Developer”
5 Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”).Set “tlin@software.nju.edu.cn”
6 Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”).Click

TS3

1 Window(“PMS”).Menu(“File”).Menu(“Open Project”).Select
2 Window(“PMS”).Table(“Project Members”).SelectRow #2
3 Window(“PMS”).Button(“Remove Member”).Click
4 Window(“PMS”).Table(“Project Members”).SelectRow #1

TS4

1 Window(“PMS”).Menu(“File”).Menu(“Open Project”).Select
cp1 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 4)

2 Window(“PMS”).Table(“Project Members”).SelectRow #1
3 Window(“PMS”).Button(“Remove Member”).Click
4 Window(“PMS”).Table(“Project Members”).SelectRow #1
5 Window(“PMS”).Button(“Add Member”).Click
6 Window(“PMS”).Dialog(“Add Member”).Field(“Character”).Set “Tester”
7 Window(“PMS”).Dialog(“Add Member”).Field(“Name”).Set “John Ding”
8 Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”).Set “johnding@cs.umd.edu”

cp2 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 3)
9 Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”).Click

cp3 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 4)

TS5

1 Window(“PMS”).Menu(“File”).Menu(“Create Project”).Select
2 Window(“PMS”).Dialog(“Create Project”).Field(“Title”).Set “newProject”
3 Window(“PMS”).Dialog(“Create Project”).Button(“Finish Project”).Click

cp1 Window(“PMS”).Field(“Name”).CheckPropery(“text”, “newProject”)
4 Window(“PMS”).Button(“Add Member”).Click
5 Window(“PMS”).Dialog(“Add Member”).Field(“Name”).Set “Eric Gu”
6 Window(“PMS”).Dialog(“Add Member”).Field(“Character”).Set “Developer”
7 Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”).Set “ericgu@cs.umd.edu”

cp2 Window(“PMS”).Dialog(“Add Member”).Field(“Character”).CheckPropery(“value”,
“Developer”)

8 Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”).Click
cp3 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 1)

Fig. 2. Five Test Scripts for Version 1.0.

Fig. 3. New Dialog Opens after Clicking Remove Mem-
ber

and hence will fail to execute.
Prior to the development of SITAR, the only way

to recognize that these low level test scripts will not
run is by (1) manual examination of their code, or (2)
execution followed by manual examination of the re-
sult logs. Needless to say, both are expensive human-
intensive processes. It is worth mentioning that tech-
niques such as type-error checking [12] would not
help in this case as there are no type modifications
in our example.

Our tool SITAR starts by obtaining, fully automat-

ically, an approximation of a model called an event-
flow graph (EFG) for version 2.0 (Figure 4). It uses
a process called GUI Ripping [9], which we very
briefly describe now. During ripping, the application
is executed; its main window is opened, the list of
all events is extracted and stored in a queue; the
events are executed by the ripper one-by-one from
this queue. Buttons are clicked, radio buttons are
selected, etc., thereby mimicking a human user. If a
text field is encountered, then a manually predeter-
mined value is entered; if none is provided, one is
generated randomly. As events execute, they open
new windows. This causes the current window to
change. The previous queue is pushed onto a stack, to
be used later once the new current window is closed.

One output of the GUI ripper is a model called the
event-flow graph (EFG). The EFG is a directed graph
model of the GUI. Its vertices represent events; edges
represent either the may-follow or dominates re-
lationship. A may-follow edge from nx to ny means
that the event represented by ny may immediately
follow the event represented by nx along some execution
paths. For example, because an end user may execute
Yes in the confirmation dialog of Figure 3, immedi-
ately after clicking on Remove Member of the main PMS
window, there is an edge from Remove Member to Yes
in this application’s EFG. Similarly, there is an edge
from Remove Member to Cancel. A dominates edge,
introduced for the first time in this research, forces
the occurrence of a preceeding event – we give an
example later in this section and formally define it in
the next section.

The EFG obtained by the ripping process is only
an approximation because the dynamic approach of
the ripper has limitations that stem from the paths it
follows, and the data it provides during ripping. For
example, in its default fully automatic mode, it cannot
generate a valid e-mail; Finish Member remains dis-
abled. Consequently, the EFG model does not contain
any of Finish Member’s incident edges. Repairing in the
face of an imperfect EFG requires manual intervention
and annotations that we introduce in this paper.

The second output of ripping is a signature for
each widget, i.e., a unique way to address and access
each widget. The signature typically consists of the



6

Create Project

Open Project

Select Row

Add Member

Title

Description

Remove Member Name

Role

Email

YesCancel

Finish Project

Finish Member

Fig. 4. Approximate Ripped EFG for Version 2.0

container (Window or Dialog), the class that was
instantiated to create the widget (e.g., Button, Field,
Menu, Table), and some properties of the widget, such
as location, height, width, and the default action used
to execute the widget. For example, the signature
for the Create Project menu item contains information
such as its class (Menu), and the containing PMS
window and the File menu. The signature enables
SITAR to map QTP statements to logical event names
in the EFGs; and ultimately test scripts to sequences
of logical event names. It is these logical sequences
that are repaired. A part of the mapping is shown
in Table 1. We note that because Character is not in
version 2.0 of PMS, it has no equivalent logical name
and is marked as NULL. An reasonable alternative to
creating logical names for each event is to generate the
corresponding QTP statement to access the widget.
However, a logical name provides us with a concise
way to address the event in our models.

TABLE 1
Partial Mapping QTP Statements to Logical Names

QTP Access Logical Name
Window(“PMS”).Menu(“File”).Menu(“Create Project”) Create Project

Window(“PMS”).Dialog(“Create Project”).Field(“Title”) Title
Window(“PMS”).Dialog(“Create Project”).Field(“Description”) Description

Window(“PMS”).Dialog(“Create Project”).Button(“Finish Project”) Finish Project
Window(“PMS”).Menu(“File”).Menu(“Open Project”) Open Project

Window(“PMS”).Button(“Add Member”) Add Member
Window(“PMS”).Button(“Remove Member”) Remove Member

Window(“PMS”).Dialog(“Add Member”).Field(“Name”) Name
Window(“PMS”).Dialog(“Add Member”).Field(“Character”) NULL

Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”) Email
Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”) Finish Member

Our repairing process starts by checking all test
scripts, i.e., ensuring that event sequences (from the
original scripts) map to paths in version 2.0’s EFG.
As expected, TS1 checks out fine; there is a valid path
〈Create Project, Title, Description, Finish Project〉 in
the EFG. All other test scripts fail.

TS2 maps to the sequence 〈Open Project, Add Mem-
ber, Name, NULL, Email, Finish Member〉. NULL

needs to be resolved. SITAR uses a shortest-path
algorithm to determine possible substitutes for NULL.
Because there is a direct edge from Name to Email, one
possible choice is that there is no longer a need for
an intermediate event. SITAR also looks for the next
shortest path because the original test script contained
an intermediate event, and hence an alternative event
might be available. It determines that Role may be
such an event. A human tester is notified of the
problem with the two possible solutions to replace
NULL (1) no event, i.e., delete NULL or (2) Role;
the tester manually sets the original Character event
as Role. This information is stored in the mapping
(Table 1) to be reused for subsequent repairs. TS2 is
still unusable because the EFG model does not contain
the edge (Email, Finish Member). The human tester is
asked to confirm the existence of this edge in version
2.0. The EFG is updated (Figure 5) and TS2 is repaired
as shown in Figure 6.

Create Project

Open Project

Select Row

Add Member

Title

Description

Remove Member Name

Role

Email

YesCancel

Finish Project

Finish Member

Fig. 5. EFG of version 2.0 after Repairing TS2

TS3, 〈Open Project, Select Row, Remove Member,
Select Row〉, has several problems. First, the edge
(Remove Member, Select Row) no longer exists. Second,
the actual removal of a member is now done when
the user clicks on Yes; in some sense, the old Remove
Member is now equivalent to the new Yes. These two
problems are handled via two mechanisms. The first
requires a tester to map the original Remove Member
to Yes. The second problem is handled by manually
annotating the edge (Remove Member, Yes) in version
2.0’s EFG as a dominates edge (Figure 7). This means
that Remove Member must always be executed imme-
diately before Yes for all executions. Supplied with
this new information, SITAR uses a 2-step process to
repair TS3. It first replaces Remove Member with Yes,
obtaining 〈Open Project, Select Row, Yes, Select Row〉;
it then uses the dominates edge to add the new
Remove Member before Yes to the repaired test script,
yielding 〈Open Project, Select Row, Remove Member,
Yes, Select Row〉. The final repaired script is shown in
Figure 6.

The information supplied thus far by the tester,



7

TS2

1 Window(“PMS”).Menu(“File”).Menu(“Open Project”).Select
2 Window(“PMS”).Button(“Add Member”).Click
3 Window(“PMS”).Dialog(“Add Member”).Field(“Name”).Set “Tao Lin”
4 Window(“PMS”).Dialog(“Add Member”).Field(“Role”).Set “Developer”
5 Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”).Set “tlin@software.nju.edu.cn”
6 Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”).Click

TS3

1 Window(“PMS”).Menu(“File”).Menu(“Open Project”).Select
2 Window(“PMS”).Table(“Project Members”).SelectRow #2
3 Window(“PMS”).Button(“Remove Member”).Click
4 Window(“PMS”).Dialog(“Remove Member?”).Button(“Yes”).Click
5 Window(“PMS”).Table(“Project Members”).SelectRow #1

TS4

1 Window(“PMS”).Menu(“File”).Menu(“Open Project”).Select
cp1 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 4)

2 Window(“PMS”).Table(“Project Members”).SelectRow #1
3 Window(“PMS”).Button(“Remove Member”).Click
4 Window(“PMS”).Dialog(“Remove Member?”).Button(“Yes”).Click
5 Window(“PMS”).Table(“Project Members”).SelectRow #1
6 Window(“PMS”).Button(“Add Member”).Click
7 Window(“PMS”).Dialog(“Add Member”).Field(“Role”).Set “Tester”
8 Window(“PMS”).Dialog(“Add Member”).Field(“Name”).Set “John Ding”
9 Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”).Set “johnding@cs.umd.edu”

cp2 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 3)
10 Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”).Click

cp3 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 4)

TS5

1 Window(“PMS”).Menu(“File”).Menu(“Create Project”).Select
2 Window(“PMS”).Dialog(“Create Project”).Field(“Title”).Set “newProject”
3 Window(“PMS”).Dialog(“Create Project”).Button(“Finish Project”).Click

cp1 Window(“PMS”).Field(“Name”).CheckPropery(“text”, “newProject”)
4 Window(“PMS”).Button(“Add Member”).Click
5 Window(“PMS”).Dialog(“Add Member”).Field(“Name”).Set “Eric Gu”
6 Window(“PMS”).Dialog(“Add Member”).Field(“Role”).Set “Developer”
7 Window(“PMS”).Dialog(“Add Member”).Field(“E-mail”).Set “ericgu@cs.umd.edu”

cp2 Window(“PMS”).Dialog(“Add Member”).Field(“Role”).CheckPropery(“value”,
“Developer”)

8 Window(“PMS”).Dialog(“Add Member”).Button(“Finish Member”).Click
cp3 Window(“PMS”).Table(“Project Members”).CheckProperty(“size”, 1)

Fig. 6. Repaired Test Scripts for Version 2.0.

Create Project

Open Project

Select Row

Add Member

Title

Description

Remove MemberName

Role

Email

Yes

dominates

Cancel

Finish Project

Finish Member

Fig. 7. Annotated EFG of Version 2.0 After Repairing
TS3

cached in the mapping table and annotated EFG is
now sufficient to fully automatically repair TS4 and
TS5. TS4 uses Remove Member and accesses the Char-
acter field. The modified mapping and dominates
relationship is used to repair TS4; the new test script
is seen in Figure 6. Note that the checkpoints (cp1,
cp2, cp3) in the script remain unchanged.

TS5 uses the Character field in an input statement
and a checkpoint. SITAR already knows how to repair
the script using the earlier modified mapping. For the
checkpoint (cp2), only the GUI object is updated; the
expected value “Developer” remains unchanged. The
final test script is in Figure 6.

4 MODELS & ALGORITHMS

A logical perspective of the components of SITAR is
shown in Figure 8. SITAR deals with three distinct

Execution space Script space Model space

Original
Test Scripts

Mapping
Original Event 

Sequence

Repaired Event 
Sequence

MappingRepaired
Test Scripts

RepairingRipping

Version n

Version n+1

Update

Assist

Annotated
EFG

Execute On

Fig. 8. Logical View of SITAR’s Components

spaces (levels of abstraction): (1) execution, (2) script,
and (3) model. Ripping raises the level from execu-
tion to model. And mapping first raises the level of
abstraction from script (for version n) to model and
then, once the scripts have been repaired, from the
model back to script (version n+1). We now discuss
the designs of these components and the models and
algorithms they employ to realize SITAR.

4.1 Ripping
Ripping aims to raise the level of abstraction of the
implemented GUI (version n+1) to an abstract model
that allows repairs. During ripping, the GUI applica-
tion is executed automatically; the application’s win-
dows are opened in a depth-first manner. The GUI
Ripper extracts all the widgets and their properties
from the GUI. During the reverse engineering pro-
cess, in addition to widget properties, additional key
attributes of each widget are recovered (e.g., whether
it is enabled, it opens a modal/modeless1 window, it
opens a menu, it closes a window, it is a button, it
is an editable text-field). These attributes are used to
construct the EFG.

A modal window is a GUI window that, once in-
voked, monopolizes the GUI interaction, restricting
the focus of the user to a specific range of events
within the window, until the window is explicitly
or implicitly terminated. Other windows in the GUI
that do not restrict the user’s focus are called modeless
windows; they merely expand the set of GUI events
available to the user. We define the term modal dialog
as a group of windows consisting of a modal window
X and a set of modeless windows that have been
invoked, either directly or indirectly from X . The
modal dialog remains in place until X is explicitly
terminated. By definition, a GUI user cannot inter-
leave events of one modal dialog with events of
other modal dialogs; the user must either explicitly
terminate the currently active modal dialog or invoke

1. Standard GUI terminology; see detailed explanations at
msdn.microsoft.com/library/en-us/vbcon/html/vbtskdisplaying
modelessform.asp and documents.wolfram.com/v4/AddOns/
JLink/1.2.7.3.html.



8

another modal dialog to execute events in different
dialogs. At all times during interaction with the GUI,
the user interacts with events within the modal dialog.

Ripping outputs an EFG model that represents all
possible event interactions in the GUI. Modeled as
a directed graph, each of its vertices represents an
event (e.g., click-on-Edit, click-on-Paste)2 and each
edge represents a may-follow relationship between
two events. A may-follow edge from vertex x to
vertex y shows that an event y may be performed
immediately after event x (i.e., y may-follow x).

The construction of the EFG is based on the identi-
fication of modal dialogs, and hence the identification
of modal and modeless windows. A classification
of GUI events is used to identify modal and mod-
eless windows. For example, Restricted-focus events
open modal windows. If v is a restricted-focus event,
then only the events of the invoked modal dialog
are available. Unrestricted-focus events open modeless
windows. If v is an unrestricted-focus event, then
the available events are all top-level events of the
invoked modal dialog available as well as all events
of the invoking modal dialog. Termination events close
modal windows. If v is a termination event, then
may-follow(v) consists of all the top-level events of
the invoking modal dialog.

In our work to date, all EFG edges are initially
may-follow after the ripping stage. In this paper,
we introduce a new type of edge, called a dominates
edge, to enhance the EFG. A dominates edge from
vertex x to vertex y shows that event y must be
preceded by event x (i.e., x dominates y); in this
case, the vertex representing y has a single incoming
edge (from x). Some edges may be manually updated
to dominates edges by a tester in the process of
repair.

Definition: An annotated EFG (or simply EFG3) is a
4-tuple 〈V, I, Emay, Edom〉, where:

1. V is a set of vertices representing all events of
objects.

2. I ⊆ V is a set of initial vertices. The events in I
are available to the user when the application is
first invoked.

3. Emay ⊆ V × V is a set of may-follows edges
between vertices. (vi, vj) ∈ Emay iff vj may be
executed immediately after vi.

4. Edom ⊆ V × V is a set of dominates edges
between vertices. (vi, vj) ∈ Edom iff vj has a single
incoming edge from vi; and vj must be preceded
by vi in all executions. And that Emay∩Edom = φ.

From our discussion so far, it is evident that an EFG
is stateless. It is merely a flow graph that encodes the
different sequences of events that may be executed on
the GUI.

2. In subsequent discussion, for brevity, the names of events will
be abbreviated, e.g., Edit and Paste.

3. Note that this is different from our previous work [6].

4.2 Mapping

The mapping between low level GUI objects/widgets
and logical events used in the model raises the level of
low-level scripts to that of the model so that sequences
may be mapped to EFG paths and subsequently re-
paired.

During ripping, we know the location of each
widget, its container (e.g., Dialog and Window), and
the class that was used to create it. These attributes
are also used by QTP to address each widget. As
discussed previously, we explicitly store the map-
ping between the QTP names and our logical event
names. We parse each script statement and extract
its object type and title. For example, the statement
JavaWindow(“PMS”).JavaButton(“Add”).click is parsed
to obtain two object types: JavaWindow and JavaButton,
and their corresponding title: PMS and Add. These are
then searched in the mapping from the ripper and
represented using their logical form. If a match is not
found that a NULL entry is created.

More formally, our mapping is a 2-column lookup
table: the first column is the addressing mechanism
used by the scripting system for a widget; the second
column is the logical model-level string label that
we assign to the widget. To create the mapping, we
start with an empty mapping, Map, adding entries
to it as we iteratively examine each script using the
following algorithm, which takes 2 inputs (1) a test
script TS consisting of a sequence of script statements
〈s1, s2, ..., sn〉 created on the original version of the
AUT A0, and (2) G1, the EFG of the modified AUT
A1. The output is the modified Map. The pseudo-code
of our technique is shown in Figure 9. As shown in
line 5-8, for each script statements si, do:

(1) If si already in Map, then skip to next script
statement; else

(2) if ∃e ∈ G1 such that e’s GUI properties (de-
termined from its signature described earlier)
match with GUI properties from the GUI ele-
ment in statement si, then add new entry (si, e)
to Map; else

(3) add new entry (si, NULL) to Map.
The second of the above 3 alternatives is desirable,
and hence, we call it a successful mapping.

As mentioned earlier, the only feasible way to ob-
tain the EFG G1 is by using automatic reverse engi-
neering techniques, which may miss a considerable
portion of windows/widgets of A1. We show later in
our empirical study on three open source Java appli-
cations that only 12-65% of the events (widgets) are
obtained by our GUI Ripper and successfully mapped.
The rest are all mapped to NULL. We also show that
at least one unsuccessfully mapped script statement
occurs in most of the scripts created by test engineers.
This result reinforces our original intuition that we
cannot use our previous fully automatic technqiues
for test script repair. Next we describe a more realistic



9

human-assisted repair approach.

4.3 Repairing
By this point, after the mapping has been obtained,
each script statement is either mapped to a high-level
event in our EFG model or NULL. Similarly, each
GUI widget referenced in checkpoints in the scripts
is also mapped to a model-level widget (equivalently
an event because of how we synonymously model
events and widgets) or NULL. SITAR is ready to start
repairing.

The ideal case for the repairer is one in which
the sequence has a non-NULL entry in the mapping
for each of its events and there is an edge in the
EFG for each adjacent event pair. Such a sequence is
considered to be valid and the mapping is used to
synthesize a low-level script.

A mapped script that has at least one NULL
(event/checkpoint) must be repaired. Moreover, even
if there are no NULL events in the script, an invalid
flow of execution of events still warrants a repair.
That is, the sequence of events performed by the
script needs to be allowed by the GUI’s workflow.
More formally, we formulate the problem of test repair
as follows. Given an EFG G1 and a mapped script,
represented as a sequence of events 〈e1, e2, ..., en〉 and
checkpoint 〈c1, c2, ..., cm〉 where ei ∈ G1∪{NULL} and
ci ∈ G1∪{NULL}, the script needs repair if one of the
following conditions is satisfied:
• Case 1, Missing event: At least one of ei or cj in the

sequence is NULL where 1 ≤ i ≤ n or 1 ≤ j ≤ m;
• Case 2, Missing edge: At least one pair (ei, ei+1),

1 ≤ i ≤ n− 1, of adjacent events in the sequence
is not a valid edge in EG1 .

The output of the repair is a sequence of
events 〈e′1, e′2, . . . , e′n〉 and repaired check points
〈c′1, c′2, ..., c′m〉 that do not contain any missing
widgets or missing edges.

Repairing starts with 4 inputs: (1) a set of logical
event sequences, each corresponding to a test script,
(2) the EFG model in which all the edges are marked
as may-follow, (3) the initial mapping, and (4) an
empty table of approved paths between each pair of
events. These 4 inputs are also seen in the pseudo-
code of the repair algorithm shown in Figure 9: input
test suite TS0 created on A0, automatically obtained
EFG G1 for application A1, initial mapping map-
pingTable and an approvedTable. We use this pseudo-
code to explain the two cases of the repair process.
• Case 1: Repair missing event when there is a NULL
event in the sequence (lines 10-13). In this case, the QTP
statement could not be mapped to a logical event in
the EFG. This may happen for a number of reasons.
First, the event may no longer exist in the GUI of
A1. In this case the tester needs to delete the event
from the script. And a may-follow relationship will
be added from the event prior to current event to

1 Initialization of global variables:
G1 = (V, I, E), mappingTable = ∅, approvedTable = ∅

2 Output: TS1, updated G1, mappingTable and approvedTable

3 Procedure repair(TestScript TS0):
4 TS1 ← ∅
5 For all test cases TC= 〈s1, s2, · · · , sn〉 ∈ TS0

6 EvtSet ← ∅; CptSet ← ∅
7 For all statements or checkpoints si ∈ TC
8 Map si to event ei or checkpoint ci
9 EvtSet.add(ei); CptSet.add(ci)
10 For all events ei and checkpoints ci ∈ EvtSet ∪ CptSet
11 If ei = NULL or ci = NULL
12 repairedSeg ← repairEventAndUpdateModel(si, ei−1, ei+1)
13 (EvtSet ∪ CptSet).replace(〈ei−1, ei, ei+1〉, repairedSeg)
14 For all 〈ei, ei+1〉 where ei and ei+1 ∈ EvtSet
15 If 〈ei, ei+1〉 /∈ E
16 repairedSeg ← repairEdgeAndUpdateModel(ei, ei+1)
17 (EvtSet ∪ CptSet).replace(〈ei, ei+1〉, repairedSeg)
18 TS1.add((EvtSet ∪ CptSet).mapToTestScript())
19 Return TS1

20 Procedure repairEventAndUpdateModel(si, ei−1, ei+1):
21 If confirm script si or remap to ei’:
22 add si or ei’ to V as εi
23 add 〈ei−1, εi〉 and 〈εi, ei+1〉 to Emay
24 If remap: mappingTable.add(si → e′i)
25 Return 〈ei−1, εi, ei+1〉
26 If deleteNode:
27 add 〈ei−1, ei+1〉 to Emay if not exist
28 Return 〈ei−1, ei+1〉
29 Return repairEdgeAndUpdateModel(ei−1, ei+1)

30 Procedure repairEdgeAndUpdateModel(x, y):
31 If approvedTable.lookup(〈x, y〉) → ξ
32 Return 〈x, ξ, y〉
33 If (a, y) ∈ Edom
34 Return repairEdgeAndUpdateModel(x, a) ∪ y
35 search the shortest path 〈x, ξi, y〉 ∈ E
36 tester confirm 〈x, ξi, y〉 from suggested paths and

may make manual modifications to the best suggested paths:
37 approvedTable.add(〈x, y〉 → ξi)
38 Return 〈x, ξi, y〉

Fig. 9. Pseudo-code of Repairer

the event after current event (lines 26-28). Second, the
event may still exist in A1, but may have been missed
during automatic creation of G1. In this case, the tester
needs to add the missed event. The new event will be
added to the vertex set V and a pair of new edges
related to this event will be added to the may-follow
edge set Emay (lines 21-23). Third, certain attributes
of the event’s widget may have changed, e.g., new
label, widget type, or it may have moved to a different
location in the GUI, making an automatic equivalence
determination by matching signatures impossible. In
this case the tester can remap the missed event to its
new counterpart in A1, and this information will be
added to a mapping table which can be referenced
by future repairs (line 24). The repairing algorithm
uses information, e.g., the sequence it is repairing, to
assist the human tester to make the above decisions.
It uses the events immediately before and after NULL
to search for possible alternatives via a shortest path
algorithm on the EFG. The alternatives are presented
to a tester, who may confirm one of the alternatives
for current and future repairs. In our implementation,
we prioritize the alternatives (by the length of the
resulting paths) and present only the most important
alternative to the tester. Note that deletion and addi-
tion of events also impact edges in the EFG. These



10

modifications are similar to those discussed in Case 2
next.
• Case 2: Repair missing edge when no EFG edge is found
for two consecutive events x and y in the sequence (lines
14-17). The repairer uses one of several mechanisms
to repair this sequence. First, it examines the approved
paths table declared as approvedTable in the pseudo-
code; if an entry of the form [(x, y) −→ ξ] is found,
then a human tester had, during a previous script
repair, declared that the subsequence 〈x, y〉 may al-
ways be replaced with 〈x, ξ, y〉, where ξ is an event
sequence. No additional confirmation is needed (lines
31-32). Second, if there is a dominates edge (a, y)
in the annotated EFG, then a is inserted into the
sequence immediately before y and if there is no EFG
edge (x, a), then Case 2 is recursively applied to (x,
a). Again, no additional confirmation is needed (lines
33-34). Third, the repairer employs the shortest path
algorithm to find a possible path between x and y
(line 35). Please note that only the paths from the ap-
provedTable or recursively found by tracing back from
dominate edges will be automatically applied as a
repair. The domain knowledge obtained from testers’
previous operations works well when there is a corre-
sponding relationship between event sequences from
the old and new versions, but cannot fully solve the
problem of lacking of context information because our
technique is based on stateless models. Whereas the
shortest path algorithm may be able to find only paths
containing may-follow edges, then confirmation is
sought from a human tester who may (1) select one
of the suggested paths, (2) create a new path in the
EFG by adding new events and edges, (3) join x and
y with a new direct edge, or (4) declare that y is not
reachable from x in this context and hence the test
script cannot be repaired. If no path is found, then
the tester needs to manually specify a path, adding
events, edges, etc., if needed (line 36).

During manual intervention, the tester may also
at any time, reclassify may-follow edges as
dominates edges. Or, the tester may create new
entries for the approved paths table (line 37). Each new
entry (i, j) causes the automatic creation of additional
new entries. For instance, assume that the tester adds
an entry [(i, j) −→ γ]. SITAR searches for all existing
entries of the form [(b, i) −→ δ], and, for each found,
adds a new entry [(b, j) −→ 〈δ, i, γ〉]. Intuitively, this
means that if there is a new approved path from i to
j, and there was an existing approved path from any
other event b to i, then the concatenated path with i in
between is automatically considered approved from b
to j.

The reader will note from the above discussion that
SITAR does not unilaterally make repair decisions.
All repairs are authorized by the tester. We feel that
this is important so that the tester can verify that
the modifications do not cause the test scripts from
deviating from the business logic that they are testing.

That being said, SITAR does use algorithms to come
up with repair suggestions from which a tester can
examine and select. Currently we offer the following
3 options to the tester, depending on the nature of the
repair.

(1) Confirmation: the user may confirm the correct-
ness of the current event which means no re-
pair is needed but just the models need to
be updated; or the user may confirm the path
suggested by SITAR when repairing an edge.

(2) Modification: the user may repair the current
event by re-mapping it to another event; or mod-
ify the path suggested by SITAR when repairing
an edge;

(3) Addition: the user may manually add a sequence
of events to repair a missing edge.

5 EMPIRICAL STUDY

We now empirically study GUI script maintenance is-
sues and evaluate the effectiveness of SITAR.4 Specif-
ically, we address the following research questions.

RQ1: What fraction of the original test scripts become
unusable after GUI modifications? What is the nature
of GUI modifications that make test scripts unusable?
RQ2: What fraction of the GUI is ripped automati-
cally?
RQ3: How many test scripts (including checkpoints)
are repaired by SITAR? How well do the repaired test
scripts cover the same percentage of code and events
as the original?
RQ4: What is the cost of repairing?
RQ5: How effective are the mappings and annota-
tions?
RQ6: What fraction of test scripts are not repaired and
why?

Metrics: We employ several metrics for the above
questions. For RQ1, we count the test scripts that
become unusable. We also classify GUI modifications
and count the number of impacted test scripts for each
modification class. For RQ2, we compare the number
of events obtained automatically by the Ripper against
those that we obtain by careful manual examination
of the GUIs. For RQ3, we count the number of scripts
successfully repaired, and compute their code and
event coverage. We manually study the checkpoints
that we fail to repair and classify the reasons. For
RQ4, we measure the cost of repairs. For RQ5, we
measure the decline in manual cost over the sequence
of repairs. We compute the operation ratio (the ratio
between number of manual operations and lines of
code of repaired test scripts) and time cost per line
of code (measured in seconds) over the entire repair
process. For RQ6, we count and classify the test
scripts that were not repaired.

4. We provide all data used in this study in downloadable form
at http://www.cs.umd.edu/users/atif/SITAR-TSE-Data



11

Study Process: We start by selecting 3 study subjects,
each with 2 versions. We then assemble a team of
testers to manually create a number of test scripts
using QTP version 11.00. A different team of testers
then uses SITAR to repair the original test scripts. Dur-
ing this process, we compute all the metrics discussed
earlier so that we can address each of our RQs.

Study Subjects: We select three applications – Cross-
word Sage5 (versions 0.3.3 and 0.3.4), PDFsam6 (ver-
sions 1.2.0 and 2.0.0), and OmegaT7(versions 1.8.1 07
and 2.0.5 03). Some of their characteristics are shown
in Table 2. For brevity, we refer to Crossword Sage
versions 0.3.3 and 0.3.4 as CS1 and CS2, respec-
tively; PDFsam versions 1.2.0 and 2.0.0 as PDF1 and
PDF2, respectively; and OmegaT versions 1.8.1 07
and 2.0.5 03 as OT1 and OT2, respectively.

TABLE 2
Characteristics of Study Subjects

Study All Modified Widgets Events LOCSubject Widgets Changed Added Deleted
CS1 59 82 1419
CS2 75 5 16 0 102 1587

PDF1 117 147 8372
PDF2 143 2 26 0 176 11795

OT1 337 376 15474
OT2 348 21 11 0 389 15341

Crossword Sage is used to build and solve cross-
word puzzles. The major change in CS2 is the data for-
mat of stored crosswords. Consequently, crosswords
created in CS1 cannot be opened in CS2. Another
change is that the size of the crossword must be input
before its creation. Finally, there are small cosmetic
changes to a menu item and a message box, and the
Save dialog’s title is changed from Open to Save. These
changes led to the addition and modification of some
GUI widgets (Table 2). None were deleted.

PDFsam is used to split and merge pdf files. From
our perspective, the major changes from PDF1 to
PDF2 are renaming of the main window’s title and the
root item of a menu tree. Although these are more or
less cosmetic changes, all test scripts will be impacted
because the main window must be opened to navigate
to other parts of the GUI.

OmegaT is a computer aided translation tool. The
major changes from OT1 to OT2 are the renaming of
the main window’s title and change of labels of 21
menu-items and buttons (Table 2); their functionality
remains unchanged.

These 3 subjects are appropriate for our study
because we have used them in previous work [1],
[29] and understand their functionality well. We also
know them, especially CrosswordSage to implement
a variety of changes, e.g., functional changes, GUI

5. http://crosswordsage.sourceforge.net/
6. http://www.pdfsam.org/
7. http://www.omegat.org/

changes, additions and re-organization of GUI com-
ponents, thereby making them suitable for test repair.
Moreover, they provide us a variety in terms of size
(from thousands of lines of code to tens of thousands).
Finally, our GUITAR tool works very well with them.
The reader will also note that we did not use the
most recent versions of the applications because the
newest releases have stabilized their GUIs over time,
providing us with very little GUI level script repair
opportunities.

Original Test Suites8: More than 200 undergraduate
students in the software engineering major were em-
ployed to create the original test scripts. The students
were given clear instructions on how to create the test
scripts. They were first trained to use QTP for 3 hours,
after which they developed a preliminary set of scripts
that were examined for quality and discarded. Only
after we were confident in their ability to create the
scripts did we employ them to create the scripts that
we used for our study. We simultaneously employed
graduate students, who have Industry experience in
software engineering, to divide each software subject
into its high level constituent functional units, each of
which implements a high level feature of the software.
We obtained 5 units for CS1, 7 for PDF, and 5 for
OT. These units were used as a guideline to the
undergraduate students creating the scripts: within
each functional unit, certain features of the application
needed to be covered by a number of test cases.
The students had the freedom to determine the exact
sequences of events per test case. All participants were
asked to start the applications in a known start state.

Even with a carefully engineered process of test
script creation, we examined all scripts manually
and discarded a few that contained no checkpoints;
the numbers finally retained were 101, 140, and 129
scripts, for CS1, PDF1, and OT1, respectively. The
maximum, minimum, and average LOC of test scripts
are seen in Table 3. As is evident, the scripts ranged
in size from small to fairly large.

TABLE 3
Size (LOC) of Test Scripts

Min Max Avg
CS1 5 305 38

PDF1 5 74 26
OT1 7 344 29

As an additional sanity check, all the scripts were
executed on their respective subject applications (orig-
inal versions for which they were created) to ensure
that they were in fact executable. Table 4 shows the
percentage of code and events covered. Even though
this study is not designed to evaluate the quality
of QTP test scripts, we note that the coverage is
quite high. GUI applications typically have significant

8. http://www.cs.umd.edu/∼atif/SITAR-TSE-Data/



12

fractions of their code for non-GUI operations (e.g.,
exceptions, communication), which we do not expect
to exercise.

TABLE 4
Coverage of Original Suites

Coverage (%) CS1 PDF1 OT1
Code 93.1 62.1 66.6
Event 76.8 77.6 88.6

We believe that our process of dividing each soft-
ware application into its functional units, and using
these to guide test script creation yielded us a fairly
diverse set of tests with a broad coverage of each
application. However, because diversity in our test
suite may influence our results (e.g., one repair may
influence many “identical” test scripts) we demon-
strate that our test scripts are diverse in two ways:
(1) in terms of uniqueness of event sequences covered,
and (2) code coverage. Because of our prior experience
with GUI testing [30], we consider the former to be
more important than the latter; we provide the latter
because of the popular use of code coverage as a
measure of test comprehensiveness.

We first determined that we had no duplicate test
cases. Further, we determined that none of our test
scripts were “contained in” (and hence redundant)
any of our other test scripts. More specifically, we
say that a test script si is contained-in sj iff it’s event
sequence is a part of sj .

Next, because our scripts are sequences of events,
we show diversity by computing the edit distances
between each pair of event sequences, and then obtain
the average edit distance and its ratio to average
test length. The results are shown in Table 5. The
numbers show that for all 3 applications, the average
edit distance of event sequences is greater than the
average length of test cases - this is possible only
when there is diversity of test cases in the test suite,
i.e., the results demonstrate a reasonably significant
diversity of the test suites for the 3 applications.

TABLE 5
Similarity of Event Sequences of Test Cases

Avg Dist Avg Len Ratio
CS1 44.3 37.8 1.17

PDF1 28.7 26.2 1.10
OT1 36.2 29.1 1.24

Finally, we measure the number of test cases needed
to cover all events and event pairs covered by the test
suites by a greedy algorithm. To obtain the same event
coverage as the test suites, 99, 112 and 118, scripts are
required for CS, PDF and OT, respectively. For event
pair coverage, 100, 130 and 125, scripts are required
for CS, PDF and OT, respectively. These results show
there is a reasonable degree of diversity between test
cases in the test suites.

We now show diversity in terms of code coverage.
Before we start, we first note that in all 3 GUI ap-
plications, there is a large portion of code written for
data and GUI initialization. Each script is expected to
execute this large initialization code, thereby reducing
diversity of code covered. Even then, our test scripts
varied in terms of the code they covered. Table 6
shows the minimum, maximum and average coverage
percentage of each test script per AUT. In addition,
we use the Jaccard similarity coefficient to measure the
similarity between the sets of lines covered in each
pair of test cases. The results are shown in Table 7.
The average similarity for the 3 AUTs is 0.56, 0.81
and 0.64, respectively, for the 3 applications. A Jaccard
index of 0.56-0.81 demonstrates a reasonable degree
of diversity in our test scripts. Also, if we take into
consideration the frequency of each line hit, the test
scripts will be even more diverse.

TABLE 6
Coverage of Test Cases

Min Max Avg
CS1 11.6 76.1 43.7

PDF1 38.1 56.9 48.1
OT1 10.0 37.6 23.9

TABLE 7
Similarity of Code Coverage of Test Cases

Min Max Avg
CS1 0.13 1.00 0.56

PDF1 0.63 1.00 0.81
OT1 0.23 1.00 0.64

Baseline: In order to address RQ1 and to establish a
baseline for our repairing technique, we executed all
test scripts without modifications on the new versions
of the applications. We counted the number of scripts
(Scripts columns in Table 8) that did not complete
successfully due to GUI modifications. We also show
the number of checkpoints in the unusable scripts
(Checkpoints columns in Table 8).

The outcomes for PDF2 and OT2 are quite startling
– none of the scripts ran to completion. For PDF-
sam, this was because the main window’s title was
changed; and the root of the menu-tree was renamed.
All test scripts must first execute an event in the
main window; a change to the title broke them all.
Additionally, those that accessed the menu must start
at the root of the menu; the renaming further deteri-
orated the already-broken scripts. Similarly, the title
of OmegaT’s window also changed; this broke all test
scripts. Additionally, capitalization of the first letter of
21 menu-items effected 63 scripts. Even CS2 lost 93.1%
of its scripts. Of these, 43 scripts failed to open the
data files created by CS1 because of format changes;
48 scripts broke because CS2 expects crossword size
to be specified but the scripts did not know how to



13

interact with the new text fields; and 58 scripts were
effected by change of the Save window’s title from
Open to Save. Certain scripts are counted more than
once in these reported numbers because they were
impacted by more than one change. In their current
form, these scripts achieve very low coverage on the
new versions of the applications (17.2% code and 9.8%
event for CS2; and 0% for others).

Delving deeper into the causes for our test script
failures provided us with valuable insights into their
possible repair, especially the difficulty of fully au-
tomatic repair. For example, even though some GUI
modifications such as change of window/widget titles
are straightforward, automatically repairing impacted
scripts is challenging. A tool will need to automati-
cally determine the mapping between old and new
titles, an algorithmically daunting task, especially
when dealing with incomplete models. Other changes
require domain knowledge for repair. For example,
CS2 always requires crossword size to be specified,
something not needed in CS1. Such a repair cannot
be automated without domain knowledge. Finally,
there are state-based relationships between events that
require complex modeling.

TABLE 8
Unusable Test Scripts

Original Scripts Unusable Scripts
Scripts Checkpoints # % Checkpoints

CS2 101 343 94 93.1 334
PDF2 140 429 140 100 429

OT2 129 452 129 100 452

We have shown that a large percentage—as much
as 100%—of the original test scripts become unusable
after GUI modifications. We discussed the nature
of the GUI modifications that made the test scripts
unusable. These results address RQ1.

Repair Process: We trained 11 participants for 3 hours
each on the usage of SITAR. They were then divided
into 3 teams, each of which worked with a single
application. The CS2, PDF2, and OT2 teams had 4,
3, and 4 members, respectively.

The process of using SITAR starts with ripping and
obtaining the EFGs. The sizes of the resulting EFGs are
shown in Table 9. The fraction of events recognized by
the ripper, and hence added to the EFGs, are quite low
for CS2 and OT2. This addresses RQ2. The missing
events will need to be supplied manually by a tester
during the repair process.

TABLE 9
Original Sizes of EFGs

Vertices/Events Edges
CS2 58 (of 102) 490

PDF2 158 (of 176) 15376
OT2 244 (of 389) 2914

Next, SITAR mapped all QTP events to logical
events in the EFGs. As expected, not all events
could be mapped. The actual numbers are shown
in Table 10. Because of the low fraction of events
recognized by the ripper for CS2 and OT2, a very
small percentage of events from the scripts could be
mapped to their logical counterparts.

TABLE 10
Events from Scripts Successfully Mapped

Total Recognized Percent
Events # Events #

CS2 3931 475 12%
PDF2 4456 2908 65%

OT2 4656 1619 35%

The iterative repair process started with SITAR at-
tempting to repair each script, providing feedback to a
human tester, and posing questions when needed, and
recording the responses in the mapping or annotated
EFG. A summary of the results is shown in Table 11.
The results are quite encouraging for PDF2 and OT2,
with 89% and 82% test scripts repaired, respectively.
We also executed all repaired scripts on their re-
spective applications. The code and event coverage
of these scripts is also reasonably high (Table 12)
relative to the original scripts. It is interesting that the
coverage of repaired suites is quite close to the cover-
age of original test suites on some applications (like
PDF2 and OT2). The percentage of repaired scripts is
not as high for CS2; we revisit the reasons for this
later. However, we find the code coverage of the 41%
repaired is quite high taking into consideration that
there are functional changes and new functionalities
are introduced which will be impossible to cover by
scripts from the original version.

TABLE 11
Repairing Results

Originally Unusable Repaired Percent Repaired
CS2 94 39 41%

PDF2 140 125 89%
OT2 129 106 82%

TABLE 12
Coverage of Regression Test Scripts

Coverage (%) CS2 PDF2 OT2
Code 68.3 51.2 62.3
Event 59.8 68.7 77.9

Finally, for RQ3 we now address the issue of Check-
points. We manually examined all the checkpoint out-
comes (numbers shown under “Total” in Table 13) in
our repaired scripts. Because we had already executed
all test scripts on the new application versions, we
knew which checkpoints had returned TRUE values
(numbers shown under “OK” in Table 13); we man-
ually verified that all these were correct. We were



14

left with a few checkpoints that failed. We manually
examined the reasons for these failures.

TABLE 13
Checkpoints

Total OK Failure Classes
I II III

CS2 162 151 3 3 5
PDF2 384 374 0 0 10

OT2 404 369 20 7 8

We identified 3 major reasons. (I) Object Reference:
The checked GUI object is changed in the new version;
the reference to this object should have been repaired
so that QTP can access it; this was not done correctly
by the tester. (II) Expected Output: The values of some
properties (e.g., Title, Label) changed in the new ver-
sion; the checkpoint still refers to the old values. These
can only be fixed manually. (III) Artifact of Execution: In
a small number of cases, while the checkpoints seem
to be specified correctly, they fail unexpectedly. We
attribute this to problems with test replay, primarily
due to timing between QTP and the applications. We
revisit this issue later. This addresses RQ3.

We measure cost in terms of time spent on each
repair operation; and hence we count the number
of operations. We distinguish between two types of
operations: Input, which requires modification of a
GUI object or inputting a QTP script line, and Confirm,
which includes confirming the correctness of original
script line, selecting a suggested path to repair test
scripts, and deleting a script line.

Input Click Input Click Input Click

Operation Count

O
pe

ra
tio

ns

0
10

00
20

00
30

00
40

00

Automatic Operations
Manual Operations

CS2 PDF2 OT2

Fig. 10. Operation Cost of SITAR

Figure 10 shows that for most of the applications,
the number of manual input operations is quite small
compared to the automatic input operations. We also
note that the proportion of manual confirm operations
increases with the size of the application and the in-
completeness of the initial EFG. OmegaT is the largest
application and its initial EFG model misses many
elements compared to the second largest application,
PDFsam, thus it needs the greatest proportion of
manual confirm operations. And for all the 3 subjects,

the confirm operations performed by SITAR are much
larger than those performed manually. This addresses
RQ4. We informally note that the sizes of the subjects,
the number of test scripts, completeness of the ripped
models, changes between application versions effect
the time of repairs. A more detailed study of these
factors is subject for future work.

To evaluate the effectiveness of repairing knowl-
edge accumulation of SITAR, we measure the man-
ual cost of repairing in Figure 11. The x-axes show
progress of the repairing process in terms of percent-
age. The y-axis of the left plot shows the operation ratio
(the ratio between number of manual operations and
lines of code of repaired test scripts); the right plot
shows time cost per line of code (measured in seconds).
The results show that (1) the cost in the early stage is
significantly higher because of the incompleteness of
initial model and lack of knowledge to perform fixes,
(2) the manual operation cost declines quickly and
achieves a low level at 20%-40% of repairing process,
(3) the repairing time cost per line of SITAR is less
than half a second most of the time. The time cost for
CS2 and PDF2 is below 1 second even for the first
10% scripts. The time cost for OT2 is relatively high
in the early stage but declines very quickly, primarily
because the earlier manual repair decisions are reused
automatically SITAR when the same situation arises
for later test scripts. We now provide a finer-grained
analysis of the nature of repairs and how they impact
downstream repairs.

0

10

20

30

40

50

Progress of Repair

O
pe

ra
tio

n 
R

at
io

 (
%

)

20% 40% 60% 80%100%

CS2
PDF2
OT2

(a) Manual Operation Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Progress of Repair

T
im

e 
C

os
t p

er
 L

in
e 

(s
ec

)

20% 40% 60% 80%100%

CS2
PDF2
OT2

(b) Time Cost per Line

Fig. 11. Cost Effectiveness

We start with Table 14, which lists the number of
different types of operations performed to repair the
test scripts for each AUT. The rows marked Manual
show the number of decisions (modify/add/confirm
discussed earlier) performed by the tester. The modify
operations can be repaired by simply using “search
and replace”, and they make up a big portion of all fix
types in our case study. These decisions are “cached”
into the model and annotations and reused by SITAR
when the need for the same repair arises; these are
shown in rows marked Auto. For example, the man-
ual confirmation of event/edges happens when an



15

event/edge is missing in the current EFG model;
once the tester confirms the repair, the event/edges
in question are added to the EFG and all future
confirmations of correctness of these events/edges is
performed automatically.

TABLE 14
Number of Operations

Modify Add Confirm

CS2 Manual 138 9 253
Auto 50 98 2918

PDF2 Manual 10 0 366
Auto 1078 0 3002

OT2 Manual 47 1 726
Auto 770 2 2645

As explained in our algorithm, SITAR always tries
to search for a path in the EFG when an edge needs
to be repaired. So as an example, 9 manual additions
in CS2 means that new events were suggested by
SITAR to the testers through path search 9 times, and
added to the EFG. The tester may simply confirm the
SITAR-suggested path or make modifications to the
suggested path. Subsequently, these 9 decisions were
used 98 times to automatically repair future broken
scripts.

In most cases, the number of manual modifica-
tion/addition operations are much fewer than auto-
matic operations. The only exception is the modifica-
tion operation in CS2. This is caused by a bug (related
to the “Save” dialog, and will be explained in detail
when discussing reasons of failed repair).

We now show, in Table 15, the impact of repair deci-
sions/operations, modify/add/confirm, on numbers
of test scripts. We show the top 5 most influencial
decisions per application. These 5 decisions impacted
the largest number of test scripts. Column “F#” shows
the unique identifier that we assigned to each fix
operation. “#Infl” shows the number of scripts in-
fluenced by this individual operation. Column “#Tot
Infl” shows the total number of test scripts influenced
by all operations thus far - it is a cumulative sum
of the “#Infl” entries. Column “#Fixed” shows the
number unusable scripts that are fixed by the oper-
ations so far. Some obvious problems, such as the
main-window-title problem for PDF2 and OT2, are
ignored because they impact all scripts and thus make
the “#Tot Infl” column always have the maximum
value (i.e., total number of test cases in the test suite).
We observe that for all 3 applications, there are a
few fixes that are related to multiple test cases. But
it is interesting to observe that fixing just the most
influential one does not mean fixing the test case.
Even if we ignore such universal problems as the
main-window-title problem, most test cases cannot
still be repaired by a single fix. For example, the first
fix operation influences 79 test cases in PDF2 but none
of them are fixed by this individual operation because
these test cases require multiple fixes.

CS

Number of Fixes

N
um

be
r 

of
 T

es
t C

as
es

0
5

10
15

20
25

1 2 3 4 5 6

PDF

Number of Fixes

N
um

be
r 

of
 T

es
t C

as
es

0
20

40
60

80

1 2 3 4 5 6

OT

Number of Fixes

N
um

be
r 

of
 T

es
t C

as
es

0
5

10
15

20

1 2 3 4 5 6

Fig. 12. Number of Fixes Required for each Test Cases

In addition, three histograms are provided in Fig-
ure 12 to show the distribution of number of fixes
required for all test cases. And unsurprisingly, most
test cases require very few (1, or 2) fixes, and there
are very few test cases that require more than 5 fixes.
This addresses RQ5.

TABLE 15
Individual Fixes and Test Cases Repaired

F# #Infl #Tot Infl #Fixed

CS2

1 47 47 22
2 4 50 26
3 1 51 26
4 1 52 26
5 1 53 26

PDF2

1 79 79 0
2 29 84 28
3 29 112 53
4 24 119 75
5 23 122 97

OT2

1 31 31 6
2 29 36 22
3 18 41 29
4 11 52 30
5 9 52 38

We analyzed the test scripts that SITAR failed to
repair, and classified the reasons for failure as (1)
Functionality Change of application, (2) Model Limi-
tation, (3) Testers’ Mistake, and (4) Others. The num-
bers of test scripts per class are shown in Table 16.
As mentioned earlier in this section, the files created
in CS1 could not be opened in CS2 because the
data file format had changed. This caused 43 test
scripts to remain unusable. We feel that such changes
cannot be automatically handled by any test repair
technique. An additional 6 test scripts could not be
repaired because of model limitation. In both versions
0.3.3 and 0.3.4 of Crossword Sage, if a user tries
to close the Main window, a modal dialog “Con-
firm Action” is shown. If the user tries to close the
Main window after doing some edits without saving,
a modal dialog “Save?” is shown. In version 0.3.3
after editing without saving, when the user clicks
the “Save” menu a “Save” dialog opens; but if the
user dismisses this dialog (without actually saving),



16

then the software incorrectly assumes that the file
was saved. Subsequently, closing the Main window
(incorrectly) opens the “Confirm Action” dialog. This
bug was removed in Version 0.3.4; the same actions
now open the “Save?” dialog. Even though this is
due to a bug, we cannot model such context-specific
behavior without state in the EFG. A richer state-
based model is needed. We encountered similar model
limitation problems in OT2.

TABLE 16
Test Scripts that SITAR could not Repair

Class CS2 PDF2 OT2
Functionality Change 43 0 0

Model Limitation 6 0 10
Tester Mistake 2 7 3
Tool Problems 4 8 10

Because SITAR’s decisions are largely
driven/confirmed by a human tester, any mistakes
made by the tester will percolate to the models
maintained by SITAR, which will finally impact the
quality of repairs. The most common mistake made
by testers was forgetting to modify or delete a QTP
line. Sometimes testers also made incorrect decisions
in repairs that are context-sensitive. We tried our
best to develop a user-friendly tool that minimizes
human error and confusion. In our implementation
of SITAR, we provide a user interface with a display
area in which scripts are shown line by line in
run time, synchronized with the process of script
checking. The scanning process stops and highlights,
in red, the offending script line that needs repair by
human intervention. SITAR provides multiple repair
options to the user in the same interface so as to
make it convenient to use. SITAR also automatically
disables contradicting options to avoid mistakes;
we include revoking mechanisms which allows the
tester to revoke previous actions as long as the tester
has not gone to the next script. We believe these
approaches help reduce the risk of a tester to do an
incorrect repair. However, as is the case with most
user-driven software, users make mistakes. Indeed,
in our experiment, we encountered a small number
of problems that were caused by mistakes made by
testers.

Finally, the nature of GUI testing test harnesses
caused a small number of problems for test repair.
These problems are an artifact of the orchestration
between all the tools that we used. QTP, although it is
a robust tool, must synchronize with the application
that is being tested. Due to the nature of GUI replay
tools, this synchronization is necessarily artificial be-
cause the application under test was never designed
to work with an automated test harness; rather it
was designed for human users. QTP uses mechanisms
such as “wait for window” or “wait for widget” to
continuously examine the screen for synchronization

cues. Sometimes these mechanisms do not work as
expected, causing test scripts to fail or hang. This
addresses RQ6.

Summing up the Results: In this study, we showed
the strengths of SITAR, in terms of the number of
repaired scripts, their checkpoints, and code and event
coverage. We also studied the weaknesses of SITAR, in
terms of classes of scripts and checkpoints that we did
not repair. As is the case with all studies, its results too
are subject to threats to validity. To minimize threats
to internal validity, we relied on robust tools, such
as QTP and ripper for this work. We also ensured
that our data is correct by continuously inspecting our
data collection codes and results carefully with 3-4
participants for each application. To minimize threats
to external validity, we used open-source applications
as our subjects; we had no influence over their codes
or evolution. However, we recognize that these appli-
cations do not represent the wide range of possible
GUIs; results are expected to be different for other
GUI application types. We also employed multiple
testers to create the test scripts and carry out the
repairs. However, they were all students. We realize
that test scripts made in a University setting may not
cover the wide spectrum of possible Industry features.

By sharing the data we used/generated in this
study, we hope to encourage other researchers to
enhance the study, thereby helping to further reduce
threats to validity, and contribute to this much under-
studied problem of test repair.

6 CONCLUSION & FUTURE RESEARCH DI-
RECTIONS

We described SITAR, a new technique to repair low-
level test scripts that have become unusable due
to GUI modifications. Our work is unique in that
we developed (1) new mechanisms to handle re-
pairs without perfect knowledge of the GUI and its
changes, (2) new annotations in an initially incomplete
GUI model to facilitate repairs, (3) mapping between
the code- and model-level to realize translation from
code to model and vice versa, and (4) mechanisms to
incorporate and cache human input into the overall
process. Our results on 3 open-source software sub-
jects are promising. We were able to repair a non-
trivial fraction of an otherwise completely unusable
test suite.

The work has laid the foundation for much future
research. Our results showed that the stateless EFG
model that we used caused a number of test scripts to
remain unusable. For example, 6 scripts in Crossword-
Sage and 10 scripts in OmegaT could not be repaired
because certain events in these scripts required the
software to be in specific states to execute; however,
this state-based information was not encoded in the
EFG, which is why these test cases could not be
repaired. Our dominates edge partially helps with the



17

issue of state/context by requiring the execution of
specific events to setup the state for certain subse-
quent events. For example, in Crossword, a size of
the crossword is required in the new version whereas
all crosswords have a fixed default size in the old
version. By annotating EFG edges along the path to
“size” as dominates, testers ensured that the scripts
setup the state with correct size before performing
other events, resulting in usable repaired test scripts.
We will study the use of better stateful models on
the quality of repairs; at the same time, we will need
to study issues of scalability and usability as state
increases the complexity and size of models.

We will also examine the benefits and potential
problems of additional automation. In our current
work, we take a conservative approach to repair, i.e.,
all repair decisions are made by a human tester. SITAR
reuses the manual decisions for subsequent repairs.
We hypothesize that this conservative approach yields
repaired scripts that are “closer” to testing the busi-
ness logic originally intended by the script creator.
Indeed, this is somewhat validated by the observa-
tion that all our checkpoints in the scripts remained
intact and useful. In particular, we will examine three
approaches towards additional automation. First, we
will attempt to execute all scripts before repairing
them, even if they are only partially executable, the
intention being this will increase the completeness of
our initial EFG model by adding more may-follow
edges covered by the partial executions. However,
such executions may also lead to an incorrect initial
model as the modified software may be buggy and
have incorrect flows – parts of test scripts may exe-
cute successfully when they should in fact have not.
Second, we will push our algorithms to make certain
decisions fully automatically without human input.
The risk, of course, is that a fully automatic approach
may lead to a repair that breaks the business logic
of the original scripts. We recognize that there has to
be a balance between automation and preservation of
intent of test script to test a certain business logic.
Such an approach requires empirical evaluation.

Third, we will explore approaches such as the one
proposed by Grechanik et al. [5] to identify changes
in GUI objects and report their locations in GUI
test scripts to assist manual test repair. Additionally,
analyzing text and finding similarities before/after
modifications in the GUI may also help automate
some repair of certain types of broken scripts. The
challenges, of course, will be to come up with effective
dictionaries that work across a range of software
GUIs, text processing algorithms that are applicable
to GUI lexicons, and image matching for widgets that
do not have text labels, e.g., icons and toolbar buttons.

Our empirical evaluation demonstrated a range
of modifications that we may term as simple (e.g.,
change of title) to complex (e.g., new context-based
flow of execution). Indeed, all the changes shown

under the Modify column, which make up the majority
of our repairs, in Table 14 may be made by simply
using text “search and replace”. Hence, we may be
able to map a range of repair transformations, from
simple (finding and replacing title text) to complex
(detecting state-based relationships), which we can
use to develop a multi-step repair process. We en-
vision the tester starting with the simplest transfor-
mation first, repairing scripts quickly repairable, and
then focusing on scripts that are difficult to repair. We
intend to study the impact, cost, quality of this process
in future work. We expect however that some simple
transformations, e.g., find/replace, if applied naively
could in fact make scripts unusable.

As is the case with most research involving empir-
ical evaluation and human subjects, our evaluation
has several weaknesses, which we will address in
future work. Our weaknesses stem mostly from the
human cost of conducting the experiments. First, we
trained a large number of volunteers to use our tools
and applications. Second, we used a relatively large
pool (hundreds consisting of thousands of lines) of
manually developed test scripts. These scripts also
included hundreds of checkpoints for each AUT; in-
serting checkpoints to check subtle business logic
components is an expensive process. Third, we re-
peated the process of repair on each application mul-
tiple times to minimize accidental errors. Fourth, all
repair reports and reasons why some scripts were not
successfully repaired needed to be manually studied
and categorized.

We have three concrete directions to improve our
experiments. First, we intend to study the test re-
pair process across multiple versions of the subject
applications. Given that we already have test scripts
for one version per application (say v1), and that all
our applications have at least one preceding version
(v0) and a later version (v2), we can bootstrap this
extension by first considering repairs from v1 to v0
(we have already shown v1 to v2), thereby doubling
our empirical results without investing in manual col-
lection of new test scripts (an extremely time intensive
task). We can trace the evolution of test scripts as
they undergo multiple repairs across versions, v0 to
v1 to v2, examining their ability to re-test functionality
they were originally created to test. We expect that
this ability will degrade as scripts undergo multiple
repairs over long periods of time. Another related
research question is to study the effects of size of
change on quality and cost of repair. We hypothesis
that if test repair is done after each commit, we will
be able to quickly fix test scripts and maintain quality.
We would consider our technique to work very well in
such scenarios because smaller modifications will help
to gradually improve the EFG model and mapping
tables. The information collected in previous minor
versions will probably still be valid after very minor
changes and thus benefit the script repair in later



18

minor versions. On the other hand, if we wait for a
large number of changes before the tests are repaired,
the repair would be expensive and may yield low
quality scripts. Much of this will depend on the nature
of the software and nature of changes over time. We
intend to study how this works in practice.

Second, we will explore the use of GUI mutations
to give us a more controlled environment for exper-
imentation. We can mutate the GUI using mutation
operators, creating multiple versions with exactly a
single change (the mutation). This controlled modifi-
cation will allow us to study how changes affect test
scripts. A major challenge for such a mutation-based
approach has been the lack of commonly accepted
GUI mutation techniques and tools. Our recent work
in this direction [31] [32] has been promising and we
believe that may make it possible to study GUI script
repair using GUI mutations in our future work.

Third, we are working with an Industry partner to
apply our test repair approach to their test scripts.
While such an application will help us understand
the strengths and weaknesses of our research, one
intellectual outcome that we desire is to get a better
understanding of metrics that test designers in Indus-
try will use/develop to evaluate the “quality” of the
repaired test scripts. Because they have never been
exposed to the concept of test repair, they currently
do not have such metrics. We envision metrics such
as “how many of the originally covered statements
are covered after the repair.” However, we do not yet
know whether they will quantify repairs on a per-
script or per-suite basis.

7 ACKNOWLEDGMENTS
This research is sponsored in part by National
Basic Research Program of China (973 Program
2014CB340702), NSFC Program (61170067 and
61373013). This work was also supported by the US
National Science Foundation under Grant No. CNS-
1205501. In addition, we thank all the volunteers
who contributed tirelessly to our empirical study.

REFERENCES
[1] A. Memon, “Automatically Repairing Event Sequence-based

GUI Test Suites for Regression Testing,” ACM Transactions on
Software Engineering and Methodology, vol. 18, no. 2, pp. 4:1–
4:36, 2008.

[2] B. Daniel, T. Gvero, and D. Marinov, “On test repair using
symbolic execution,” in Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA’10), 2010, pp. 207–
218.

[3] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and
M. Pezz, “Automated GUI Refactoring and Test Script Repair,”
in Proceedings of the International Workshop on End-to-End Test
Script Engineering (ETSE’11), 2011, pp. 38–41.

[4] A. Kervinen, M. Maunumaa, T. Pääkkönen, and M. Katara,
“Model-based testing through a GUI,” in Proceedings of the 5th
international conference on Formal Approaches to Software Testing,
2006, pp. 16–31.

[5] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and Evolving
GUI-directed Test Scripts,” in Proceedings of the International
Conference on Software Engineering (ICSE’09), 2009, pp. 408–418.

[6] A. Memon, “An Event-flow Model of GUI-based Applications
for Testing,” Software Testing, Verification and Reliability, vol. 17,
no. 3, pp. 137–157, 2007.

[7] T. Lalwani, QuickTest Professional Unplugged: 2nd Edition.
KnowledgeInbox, 2011.

[8] D. Burns, Selenium 1.0 Testing Tools: Beginners Guide. Packt
Publishing, 2010.

[9] A. Memon, I. Banerjee, and A. Nagarajan, “GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing,”
in Proceedings of the Working Conference on Reverse Engineering
(WCRE’03), 2003, pp. 260–269.

[10] A. Memon and M. L. Soffa, “Regression Testing of GUIs,”
in Proceedings of the European Software Engineering Conference
Held Jointly With ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE’03), 2003, pp.
118–127.

[11] S. Huang, M. B. Cohen, and A. M. Memon, “Repairing
gui test suites using a genetic algorithm,” in Proceedings
of the 2010 Third International Conference on Software Testing,
Verification and Validation, ser. ICST ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 245–254. [Online].
Available: http://dx.doi.org/10.1109/ICST.2010.39

[12] C. Fu, M. Grechanik, and Q. Xie, “Inferring types of references
to gui objects in test scripts,” in Software Testing Verification and
Validation, 2009. ICST’09. International Conference on. IEEE,
2009, pp. 1–10.

[13] S. Zhang, H. Lü, and M. D. Ernst, “Automatically
repairing broken workflows for evolving gui applications,”
in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York,
NY, USA: ACM, 2013, pp. 45–55. [Online]. Available:
http://doi.acm.org/10.1145/2483760.2483775

[14] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso, “WATER:
Web Application TEst Repair,” in Proceedings of the International
Workshop on End-to-End Test Script Engineering (ETSE’11), 2011,
pp. 24–29.

[15] M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Comparing
the maintainability of selenium webdriver test suites
employing different locators: A case study,” in Proceedings
of the 2013 International Workshop on Joining AcadeMiA and
Industry Contributions to Testing Automation, ser. JAMAICA
2013. New York, NY, USA: ACM, 2013, pp. 53–58. [Online].
Available: http://doi.acm.org/10.1145/2489280.2489284

[16] N. Alshahwan and M. Harman, “Automated session data
repair for web application regression testing,” in Proceedings
of the International Conference on Software Testing, Verification,
and Validation (ICST’08), 2008, pp. 298–307.

[17] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Automatically
repairing test cases for evolving method declarations,” in
Proceedings of International Conference on Software Maintenance
(ICSM’10), 2010, pp. 1–5.

[18] ——, “Supporting test suite evolution through test
case adaptation,” in Proceedings of the 2012 IEEE Fifth
International Conference on Software Testing, Verification and
Validation, ser. ICST ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 231–240. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2012.103

[19] M. Mirzaaghaei, “Automatic test suite evolution,” in
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York,
NY, USA: ACM, 2011, pp. 396–399. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025172

[20] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert:
Suggesting repairs for broken unit tests,” in Proceedings of the
International Conference on Automated Software Engineering (ASE
’09), 2009, pp. 433–444.

[21] R. B. Evans and A. Savoia, “Differential testing: A new
approach to change detection,” in Proceedings of the the 6th
Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ser. ESEC-FSE ’07. New York,
NY, USA: ACM, 2007, pp. 549–552. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287707

[22] K. Taneja, D. Dig, and T. Xie, “Automated detection
of api refactorings in libraries,” in Proceedings of the
Twenty-second IEEE/ACM International Conference on Automated



19

Software Engineering, ser. ASE ’07. New York, NY,
USA: ACM, 2007, pp. 377–380. [Online]. Available:
http://doi.acm.org/10.1145/1321631.1321688

[23] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog:
A generic method for automatic software repair,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 54–72, Jan. 2012. [Online].
Available: http://dx.doi.org/10.1109/TSE.2011.104

[24] A. Memon and Q. Xie, “Using transient/persistent errors to
develop automated test oracles for event-driven software,”
in Proceedings of the 19th IEEE International Conference on
Automated Software Engineering, ser. ASE ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 186–195. [Online].
Available: http://dx.doi.org/10.1109/ASE.2004.73

[25] Q. Xie and A. M. Memon, “Designing and comparing auto-
mated test oracles for gui-based software applications,” ACM
Trans. Softw. Eng. Methodol., vol. 16, no. 1, Feb. 2007. [Online].
Available: http://doi.acm.org/10.1145/1189748.1189752

[26] T. Xie, “Augmenting automatically generated unit-test suites
with regression oracle checking,” in Proceedings of the
20th European Conference on Object-Oriented Programming, ser.
ECOOP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
380–403.

[27] W. Yang, Z. Chen, Z. Gao, Y. Zou, and X. Xu, “Gui testing
assisted by human knowledge: Random vs. functional,” J.
Syst. Softw., vol. 89, pp. 76–86, Mar. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2013.09.043

[28] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths
and realities of test-suite evolution,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 33:1–33:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393634

[29] B. N. Nguyen and A. M. Memon, “An observe-model-exercise*
paradigm to test event-driven systems with undetermined in-
put spaces,” Software Engineering, IEEE Transactions on, vol. 40,
no. 3, pp. 216–234, 2014.

[30] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage
criteria for gui testing,” in ACM SIGSOFT Software Engineering
Notes, vol. 26, no. 5. ACM, 2001, pp. 256–267.

[31] R. A. P. Oliveira, A. Emil, Z. Gao, and A. Memon, “Definition
and evaluation of mutation operators for gui-level mutation
analysis,” in Software Testing, Verification and Validation Work-
shops (ICSTW), 2015 IEEE Eighth International Conference on.
IEEE, 2015, p. to appear.

[32] E. Algroth, Z. Gao, R. A. Oliveira, and A. Memon, “Concep-
tualization and evaluation of component-based testing unified
with visual gui testing: an empirical study,” in Proceedings
of the 2015 Eighth International Conference on Software Testing,
Verification and Validation, ser. ICST ’15. Washington, DC, USA:
IEEE Computer Society, 2015, p. to appear.

Zebao Gao is a PhD student at the De-
partment of Computer Science, University of
Maryland, College Park. Zebao received his
BS and MS degrees from Nanjing Univer-
sity, China. He used to work as a software-
development intern at eBay CDC and a re-
search intern at Baidu Inc. His previous re-
search experiences include program fault lo-
calization, test script repairing and testing
coverage criteria. Since 2013, Zebao be-
comes a research assistant at the EDSL lab

where he works on the GUITAR and Comet projects. His current
research interests include GUI testing, reverse engineering and pro-
gram analysis. He is applying empirical study and building automatic
testing techniques and frameworks to bridge the gaps between
research and testing practices in industry.

Zhenyu Chen is currently an Associate Pro-
fessor at the Software Institute, Nanjing Uni-
versity. He received his bachelor, and Ph.D.
in Mathematics from Nanjing University. He
worked as a Postdoctoral Researcher at
the School of Computer Science and En-
gineering, Southeast University, China. His
research interests focus on software analysis
and testing. He has about 80 publications in
journals and proceedings including TOSEM,
TSE, JSS, SQJ, IJSEKE, ICSE, FSE, ISSTA,

ICST, QSIC etc. He has served as PC co-chair of QSIC 2013,
AST2013, IWPD2012, and the program committee member of many
international conferences. He has won research funding from several
competitive sources such as NSFC. He is a member of the IEEE.

Yunxiao Zou is a PhD Student at the Depart-
ment of Computer Science of Purdue Uni-
versity. He received BS and MS from Nan-
jing University, China. His research interest
includes software testing, program analysis
and profiling. In addition to his interests in
Computer Science, he likes mathematics as
well.

Atif Memon is a Professor at the Department
of Computer Science, University of Mary-
land, where he founded and heads the Event
Driven Software Lab (EDSL). His research
interests include software security, program
testing, software engineering, experimenta-
tion, and computational biology. He is cur-
rently working in all these areas with funding
from the US National Institutes for Health, the
US Defense Advanced Research Projects
Agency, the US National Security Agency,

and the US National Science Foundation. He is currently serving on
a National Academy of Sciences panel as an expert in the area of
Computer Science and Information Technology, for the Pakistan-U.S.
Science and Technology Cooperative Program, sponsored by United
States Agency for International Development (USAID). In addition
to his research and academic interests, he handcrafts fine wood
furniture.


