
Which of My Failures are Real?
Using Relevance Ranking to Raise True Failures to the Top

Zebao Gao
Department of Computer Science

University of Maryland, College Park
Maryland, US

gaozebao@cs.umd.edu

Atif M. Memon
Department of Computer Science

University of Maryland, College Park
Maryland, US

atif@cs.umd.edu

ABSTRACT
GUI reference testing is performed to detect regression er-
rors in a modified or patched GUI software. Test cases are
executed on the original and modified GUIs; differences in
the states of GUI widgets across versions indicate potential
defects. However, various factors (e.g., position, flakiness,
resolution) create problems for accurate GUI state collec-
tion, leading to spurious state mismatches, and hence false
positives; these need to be weeded out manually. In this
paper, we show that the problem of false positives is signifi-
cant, often inundating the tester with a large number of false
bug reports, requiring a disproportionate amount of manual
effort. We develop an entropy-based approach to rank each
GUI widget property, and use it to determine whether a
state mismatch (indicative of a bug) is real or a false posi-
tive. Our empirical evaluation shows that this ranking helps
to percolate real bugs to the top of a set of reported bugs,
thereby helping to economize tester time.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Software Testing—Oracle,
System Testing

General Terms
Software Engineering

1. INTRODUCTION
One popular way to perform regression testing of a GUI-
based software application uses “GUI reference testing” [13].
Given two versions of a GUI-based software, v1 and v2,
test cases—consisting of sequences of GUI events and data
inputs—are executed on both v1 and v2. The state of some
or all GUI widgets is captured from both versions at a cer-
tain time instant, and then compared. If there is a mis-
match, it is reported as a possible failure. Because some
differences are expected (e.g., because v2 may have new fea-
tures), all mismatches are examined, typically manually, by

a tester. Those due to bugs are recorded; others are dis-
carded.

The above described GUI reference testing scenario would
work perfectly if the GUI state could be captured determin-
istically. Unfortunately, this is not the case. Several factors
contribute to the difficulty of capturing GUI state; we note
only few. First, GUI test-case execution is known to be
flaky [4], i.e., a test case may produce a different outcomes
each time it is executed. One reason for this is the test har-
ness and the application under test are two separate pieces of
software, designed by different teams of programmers from
different organizations, that must necessarily work together
so that the harness can execute test cases, one event at a
time, and collect GUI state at various time intervals. In
previous work [4], we have shown that synchronization is-
sues and artificially inserted delays can cause problems in
test execution and state collection.

Second, some parts of the GUI state are tightly coupled
with the underlying hardware, e.g., screen resolution. In
this case, the width and height of a widget may be reported
differently by the windowing system based on the screen’s
current resolution. Even if the resolution remains constant,
the number of pixels may be misreported by a small num-
ber (usually 1). Third, because window placement decisions
are typically made by the windowing system, taking into
account other running applications, it is possible that the
application under test is given a different location on the
screen each time it is executed, resulting in a different out-
put of getLocationOnScreen(). Finally, because window
painting and repainting are resource intensive operations, it
is difficult to predict when a window will finish displaying.
Consequently, the time instant when the window state gets
recorded may yield an incomplete state because the win-
dow may not have completed being displayed. In general,
because the harness and application under test are disjoint
software, it is non-trivial to synchronize them.

The above problems with accurate GUI state recording has
implications for GUI reference testing. When a test case is
executed on v1 and v2, and corresponding GUI states are
compared, a mismatch may be a true mismatch (e.g., due
to a bug or expected changes between v1 and v2) or a false
positive because the GUI state was recorded incorrectly. In
either case, the mismatch needs to be manually examined
by a human tester. If there are too many false positives,
the human tester has to spend a disproportionate amount



of time weeding them out instead of focusing on true faults.
In many cases, GUI test automation is abandoned in the
face of an overwhelming number of false positives.

In this paper, we address the issue of false positives by rank-
ing mismatches. We observe all reported values of wid-
get properties and compute an entropy score per-widget-
property. A property with a high entropy is more likely
to lead to a false positive because it indiscriminately jumps
between various values. All mismatches with this property
are ranked low. The high-ranking mismatches percolate to
the top of the reported set of mismatches. These comprise
the mismatches associated with low-entropy properties. Be-
cause the values of these properties have largely been stable,
mismatches are more likely to be due to real differences be-
tween versions.

We empirically evaluate our approach on 3 applications with
4 real bugs. Because of mismatches, we see 100% test cases
failing because of false positives. The experiment results
show that application of our approach helped to percolate
real bugs to the top of the prioritized list of reported mis-
matches. In addition, we analyze the GUI properties that
contribute to false positives in our case study.

We present background on GUI testing, GUI test cases, state
models, and test oracles next. We also summarize related
literature. In Section 3, we present our model of entropy
using a simple running example. In Section 4, we present
the design of our empirical study, with its results in Section
5. Finally we conclude with a discussion of future work in
Section 6.

2. BACKGROUND & RELATED WORK
Automatic regression testing [19] has long been a research
topic in the area of software testing. Also, as Graphical
User Interfaces (GUIs) are playing a crucially important role
in modern softwares, automatic testing of GUI applications
[10, 8] are attracting more and more research efforts. This
paper presents a technique, autoOrac, which can be used
to identify real faults from false positives in regression GUI
testing. Our technique is based on our previous work on
automatic regression testing of GUI applications, with test
case generation and test oracle as two key components. In
this section, we will introduce the techniques that we have
been using for automatic test generation and oracle. We
will also explain why false positive is a major issue in this
setting.

2.1 GUI Test Cases
We use the GUITAR [7, 15] system as our testing harness for
automatic test generation. GUITAR is an automatic GUI
Testing frAmewoRk which supports automatic GUI ripping,
Event Flow Graph (EFG) construction, test generation and
test execution.

GUI Ripping [11, 9] is a technique to automatically reverse
engineer the GUI structure of an Application Under Test
(AUT). The GUI ripper starts from the initial state of the
application, and tries to traverse all the events available in
the GUI in a depth-first manner. During the process, the
ripper extract the AUT’s GUI structure information includ-
ing the hierarchal structure of windows, widgets, as well as

their properties such as title, width, height, etc. The ripper
also keeps track of the invoking events of each new window.
This information, together with the GUI structure informa-
tion will be used to construct the event model of the AUT.

In the EFG construction stage, a directed graph model is
constructed to depict the possible interactions between the
GUI events. Inside an EFG, a vertex represents an event
(e.g., Click-on-Button, Check-a-RadioBox) and a directed
edge from event x to y means that event y may-follow, i.e.,
can be executed immediately after, event x in some condi-
tion.

Then GUITAR will be able to generate test cases to satisfy
a certain type of event coverage criteria [5, 14]. Each test
case is a sequence of events that follows a certain path on the
EFG. We call a test suite “length-k” test suite if it covers all
k-paths (i.e., paths of length k) on the EFG. For example, a
length-1 test suite covers all events and a length-2 test suite
covers all edges on the EFG. The greater k is, the more
test cases will be required to cover all k-paths. Thus it is
often preferable to apply random test generation techniques
to obtain long test cases.

2.2 GUI State Model & GUI Test Oracle
The test cases generated can be automatically executed, or
replayed, by our testing harness. During replay, the GUI
structure information can be captured after each test step.
To be more specific, all properties of all widgets in all win-
dows of the application after execution of each GUI event
can be recorded in our GUI state model. And the GUI state
information can be used to design automatic GUI oracle in
regression testing.

Test oracle is an important part in testing as it is the mech-
anism to determine whether a test case execution passes or
fails. Thus effective automatic GUI test oracles are nec-
essary parts of the automatic regression system. Different
from traditional applications which generally only use the fi-
nal output values to determine the correctness of a software,
GUI test oracles are much more complex in terms of input
and output of the application. GUI testing may accept arbi-
trary combination of events as test inputs, and the outputs
include the whole GUI states and other forms of outputs
throughout the execution sequence. These problems make
automatic GUI testing more complex and challenging.

An automatic GUI test oracle technique is proposed by Xie
and Memon [20] which utilize the GUI state information.
In their technique, they execute the same test suite on two
versions, one correct version and one buggy version, of the
AUT, and compare the values of GUI properties obtained
from the two versions: a mismatch means the test case re-
veals a bug without considering about noises caused by false
positives. An important contribution in their work is that it
allows multiple options regarding the set of widget proper-
ties to check and the frequency of state checking. The tester
may select to check the GUI properties associated with the
event, or the current active window or all windows. Also the
tester is allowed to check for mismatches after each step or
only at the last step of the test case.



2.3 Why False Positives?
Even though some techniques are proposed to solve the au-
tomatic GUI oracle problem, they still tend to report a large
number of false positives in real scenarios. A false positive is
the case when mismatches are detected between executions
without presence of a bug.

As introduced in previous sections of this paper, during exe-
cution of test cases, GUI test oracles are checking a rich set
of GUI state information, including those properties that are
very sensitive to internal or external runtime environment.
The value of such properties are difficult to control even on
the same machine and OS, and with the same libraries and
inputs. In regression testing scenario where two versions
of applications are involved, cases are even more complex.
For example, some features from the previous version may
be changed or even removed in the new version, and new
added functional or GUI modules are also likely to create
mismatches between versions.

Before our technique, autoOrac, human testers may have to
manually go through all reported “failure” a big portion of
which are false positives. This makes the testing procedure
tedious and ineffective. Our technique proposed in this pa-
per may help alleviate this problem. The novel idea is based
on the observation that different GUI properties associated
with different widget have a different chance to change dur-
ing test execution. We can thus build an entropy model to
depict the stability of different widget-properties. And with
this model, we will be able to predicate more precisely which
mismatches are real bugs.

2.4 Related Work
Regression testing has been extensively studied especially in
fields such as test selection and minimization [18, 19]. These
works aim to minimize cost of regression testing by elimi-
nating redundant test cases. They assume the existence of
automatic oracle whereas we do not have this ideal assump-
tion in our work and target to solve the problem of false
positives with automatic oracles.

There exist a number of techniques that target on generating
or supporting oracles. Some approaches [3, 12] make use of
specifications to support oracles. Richardson [17] presented
a toolkit named TAOS (Testing with Analysis and Oracle
Support) which allows users to write down expected outputs
or to specify the ranges, etc. The major difference between
our technique and theirs is that our tool works automatically
at a lower level.

Some other techniques are proposed to generate oracle with-
out specifications. JCrasher [2] generates oracles based on
crash and exception information from execution on previous
version. Eclat [16] learns a model from assumed correct ex-
ecutions to assert test results. The difference between this
technique and ours is that it use the existing execution data
to predict and pick test cases that are likely to reveal faults in
future versions, whereas our model targets on measuring re-
liability of actual mismatches between previous and current
versions. Harrold [6] and Xie [22] proposed spectra compar-
ison approaches which capture internal program execution
information to expose faults. Our technique is different from
theirs in that we do not use internal program information

and we build our entropy model based on execution infor-
mation on the previous version only. Another tool called
Orstra is developed by Xie [21] to assert object states and
return values of methods. Orstra generates assertions based
on observed behaviors and adds assertions to check future
runs. Orstra is able to augment a unit-test suite with regres-
sion oracles. This tool is different from ours as well because
we are asserting behaviors at the system level. In addition,
although both Orstra and our technique make some kind
of predications based on existing behavior, they are making
predications on future runs whereas we are measuring the
possibility of mismatches being real faults.

Finally, as mentioned in the Background section of this pa-
per, Xie and Memon [20] proposed an automatic GUI oracle
technique based on different levels of GUI state information.
Their work laid the basis of autoOrac, but there are great
differences between their technique and autoOrac. First,
they are evaluating their technique on the same version of
AUTs with instrumented faults, whereas autoOractargets to
make automatic GUI oracles usable on real regression sce-
narios with real applications and bugs where false positives
tend to be massive. As a result, instead of purely relying
on the GUI state information, the major contribution of our
technique is to predicate the stability of widget-properties
based on history execution data. This is a novel approach
as far as we know.

3. MODELING WIDGET RANKING
We now describe how we compute the ranking of mismatches
so that false positives are assigned lower importance com-
pared to real bugs. To help explain the mathematical con-
cepts, we use a running example to present our approach
and computations. The example uses an open source appli-
cation, jEdit1, from Sourceforge2 and a real regression bug
reported on Sourceforge3. More information of the subject
application is provided in Section 4. The example is simpli-
fied to make the illustration clearer.

In the example, after executing a sequence of GUI events on
jEdit, a dialog “Edit Status Bar Entry” shows up allowing
users to choose and add a new widget type. Figure 1 shows
the screenshots of GUI state prior to adding the widget type:
the top part is the correct version v1 and bottom is the buggy
version v2. The top screenshot shows the GUI state of v1
where the dropdown list titled “Choose a widget” is enabled;
whereas the bottom screenshot shows the GUI state of v2
where the dropdown list is erroneously grayed and hence a
bug.

In a standard regression testing scenario, we will compare
the GUI states after execution on v1 and v2 and identify
the mismatches as bugs. In this real example, multiple mis-
matches can be observed in the GUI properties captured on
the GUI states. For example, the width of the text field and
the x-coordinate of the radio button “widget” are reported
as different in two versions, and the dropdown list titled
“Choose a widget” is enabled in v1 but grayed out in v2.
Do all these mismatches show real bugs? And if not, how

1http://sourceforge.net/projects/jedit/
2http://sourceforge.net/
3http://sourceforge.net/p/jedit/bugs/3645/



Figure 1: Screenshots of the Example Application

can we automatically identify mismatches related to the real
bug? In the following parts of this section, we will apply our
computations of entropy and ranking to show how they can
help percolate to the top real bugs.

3.1 Stability of GUI Properties
In this step, we measure the stability of a GUI property.
Entropy is widely used for measurement of stability [1]. It
is also used in previous work [4] to measure the stability of
test execution. In general, the higher the entropy value is,
the less stable the property set is. We continue with our
example to show how this metric works on GUI property
data.

For each property and for each widget, we extract the set of
values of this property that shows up during the execution
of the test suite and calculate its entropy to finally obtain a
value for stability based on the following definition.

Definition 1 (St(widget, property)). The stability
of a GUI property with regard to a certain widget is measured
by the entropy of the set of property values (X) of the widget
observed during the execution of the test suite on a certain
version of AUT.

St(property, widget) = H(X) = −
n∑

i=1

p(Xi)loge(p(Xi))

where Xi stands for an identical property value and p(Xi)
stands for the probability of a property having value Xi.

The stability is defined as entropy of the set of values of a
widget-property. Thus the smaller St(widget, property) is,
the more stable the widget-property is.

Now assume that we have a pool of regression test cases on
v1 of our example AUT. After execution of all these test
cases, we are able to collect the GUI state information: in-
cluding all GUI properties of all widgets after the execution
of each test step. During this process, we have observed
different property values of different widgets for a certain
times. We pick three example GUI widgets and the val-
ues observed regarding three properties: the width property
measures the width of a window, container or widget in pix-
els; the X-coord property is the relative position of the top
left corner of a widget in relation to the top left corner of
the parent window; and the isEnabled is a boolean property
which indicates whether a widget is usable or not. We show
these sample widgets and properties in the first two columns
of Table 1. In the third column, we show the total times the
widget property is observed during the execution of the test
suite. In Colums “Value 1” through “Value 3”, we show the
different values and the times these values are observed.

Based on the definition of St(widget, property), we can cal-
culate the stability of widget properties as entropy values.
For example, the width property of the Main Window is ob-
served with 3 different values showing up for 80, 50, and 70
times respectively. Thus its stability can be calculated as

−( 80
200
∗ loge( 80

200
) + 50

200
∗ loge( 50

200
) + 70

200
∗ loge( 70

200
)) = 1.08.

As another example, the isEnabled property of the dropdown
list “Choose...” has 2 different values occurring for 180 and
20 times respectively. Thus its stability can be calculated as

−( 180
200
∗ loge( 180

200
) + 20

200
∗ loge( 20

200
)) = 0.33.

The second widget property has a smaller entropy value,
thus it has greater stability than the former widget property.
The results show that, in this example, properties such as
width and X-coord are less stable and may lead to “spurious”
mismatches, and properties such as isEnabled are much more
stable and should thus be more reliably used in an automatic
oracle in GUI regression testing.

3.2 Weighted Distance of GUI Widgets
GUI properties with greater stability (smaller St values) are
considered more reliable in regression, and thus should be as-
signed greater weight in the distance calculation when such
properties have mismatches. We assign a weight to each
property that is proportional to St(property).

Hence, for a GUI widget with property p and two property
values (may be the same or different) in two executions, we
calculate the weighted distance regarding to the widget and
property as follows:

Definition 2. Wd(widget, property) = St(p) ∗mis(p)

where mis(p) is 1 if the values of property p in two replays
mismatch and is 0 otherwise.



Table 1: Sample Widgets and Property Values Observed During Execution on v1

Widget Property Total Times
Value 1 Value 2 Value 3

Entropy
Value Times Value Times Value Times

TextField
Width 200 335 80 336 50 337 70 1.08

X-coord 200 249 100 251 100 – – 0.69
isEnabled 200 True 140 False 60 – – 0.61

Radio Button Width 200 110 120 112 80 – – 0.67
“widget” X-coord 200 350 100 352 50 351 50 1.04

isEnabled 200 True 60 False 140 – – 0.61
Dropdown List Width 200 260 120 262 60 258 20 0.90

“Choose...” X-coord 200 300 90 302 50 298 60 1.07
isEnabled 200 True 180 False 20 – – 0.33

The weighted distance is used to determine the overall im-
portance of mismatches of property values of a certain wid-
get in two executions. When we compute the weighted dis-
tance of a certain widget based on the GUI states captured
from executions on v1 and v2 of the application, we quantify
the chance this mismatch is a real fault because the stabil-
ity of different properties are taken into consideration in the
metrics.

In Table 2, we show the calculation for weighted distance
based on our previous example. Column “Stability” shows
the entropies of widget properties obtained from previous
step. Column “Mis” will have a value 1 if the property of
this widget is observed to have different values when the
same test case is executed on v1 and v2 of the AUT. And
finally Column “WD” show the value of weighted distance
calculated based on our definition. The results show that
5 non-zero weighted distances in our example even though
only 1 mismatch is expected to be related with the real bug.

Table 2: Weighted Distances of Sample Widget and
Properties Between v1 and v2

Widget Property Stability Mis WD Rank

TextField
Width 1.08 1 1.08 5

X-coord 0.69 0 0 –
isEnabled 0.61 0 0 –

Radio Width 0.67 1 0.67 2
Button X-coord 1.04 1 1.04 4

“widget” isEnabled 0.61 0 0 –
Dropdown Width 0.90 1 0.90 3

List X-coord 1.07 0 0 –
“Choose...” isEnabled 0.33 1 0.33 1

3.3 Widget Ranking
In the last step of autoOrac, we apply our metrics to the sce-
nario of regression testing. To be specific, we obtain two GUI
states by executing the same test cases on two regression
versions, v1 and v2, of the AUT. For each widget-property
observed in the two executions, we calculate the weighted
distance Wd(widget, property). We then rank the distances
in ascending order to obtain the top K mismatches.

The list of top K widget-properties is presented to testers to
confirm if they reveal real bugs or are false positives. When
the test case actually fails, if the bug revealing mismatch
is included in the top list, then autoOrac helps successfully
distinguish bugs and save manual inspection effort.

To continue with our previous example, the ranking is shown
in Column “Rank” of Table 2. Multiple non-zero weighted
distances are obtained in the previous stages of our example.
Now we rank the weighted distances in an ascending order
to obtain the rank of each mismatch. As shown in the table,
the isEnabled property of widget Dropdown List “Choose...”
has the smallest weighted distance, and is thus considered
as the mismatch that is most relevant with the bug. Thus,
our technique autoOrac is able to alleviate human inspection
effort by raising the most related ones to the top of list.

4. EMPIRICAL STUDY
We pose the following research questions regarding our ap-
proach, autoOrac:

RQ1: How effective is autoOrac in distinguishing mismatches
related with real failures?

RQ2: What GUI properties are the major reasons for false
positives?

To answer the first research question, we evaluate autoOrac
on real applications and bugs. We measure the rankings of
failure related mismatches of widget-properties in the sce-
nario of regression GUI testing. In the second research
question, we determin those mismatching widget-properties
that are unrelated with the failures, i.e., false positives. To
address this research question, we firstly provide a list of
properties ranked by stability which can provide us with a
general idea on characteristics of different GUI properties.
Further, we group false positives identified in our case study
by property to figure out flaky (unstable) widget-properties
in the real world.

4.1 Subjects of Study & Bugs
The following three Java applications are used in our empir-
ical study:

1. jEdit4 is a text editor for programmers.

2. Jmol5 is a molecular viewer for three-dimensional chem-
ical structures.

3. JabRef6 is a bibliography reference manager.

4http://sourceforge.net/p/jedit/
5http://sourceforge.net/p/jmol/
6http://sourceforge.net/projects/jabref/



Table 3: Bugs of AUTs
Bug Id |TC | Steps Oracle

3645 8 1. Click on tool bar icon ”Global options”; The “Enabled” property of the Dropdown List “Choose
2. Click on menu tree item ”Status Bar”; a Widget” is True in v1 whereas false in v2.
3. Click on tab “Widgets”;
4. Click on button ”+”.

T3 8 1. Click on menu “Help”; The logo of Jmol is shown in v1 whereas not shown
2. Click on menu item “About Jmol”. in v2 in dialog “About Jmol”.

65 6 1. Click on menu “Options”; The widget “JabRef Help” contains help content
2. Click on menu item “Customize entry types”; in v1 but is empty in v2.
3.Click on the help icon in the new window.

1130 6 1. Click on toolbar icon “new” to create a new The “Enabled” property of the menu item “Close
database. database” has is true in v1 whereas is false in v2.

Table 4: Bugs in jEdit, Jmol and JabRef
AUT Bug Id v1 v2 v3
jEdit 3645 4.4.2 4.5.1 5.0-pre1
Jmol T3 12.2.34 13.0.1 14.2.11

JabRef
65 1.1 1.2 1.3.1

1130 1.7.1 1.8-beta 2.0-beta

For each AUT, we inspect multiple versions and select 4 re-
ported regression bugs from these applications’ bug report-
ing sites (usually SourceForge). These 4 bugs are picked
because all of them are reflected on the GUI of the AUTs
with different values of a certain widget-properties and thus
suitable for our study. In Table 4, we show the versions in
which the bugs were introduced and fixed. We use v2 to no-
tate the version in which the bug was first introduced. v1 is
used to notate the past version in which the broken feature
still worked. Finally, we use v3 to notate the future version
in which the bug was first fixed.

We make use of our automatic testing harness to generate
length 2 test cases that cover all edges of the event-flow
graph (EFG). Among these test cases, a sample fault re-
vealing test case is picked out for each bug and listed in
Table 3. Column “|TC |” of the table shows the number of
test cases picked for each bug. The necessary steps to trigger
each bug are listed in the third column of the table, and the
last column shows the oracles that can be used to detect the
occurrence of each bug. In our experiments, all test cases
are replayed automatically on both v1 and v2 of the AUT,
and the GUI states, including all properties of all widgets
after each test step are captured during the execution.

4.1.1 Addressing RQ1
We firstly show the stability of each GUI property based
on execution of all test cases on v1 in Table 5. The results
show that there is a big variance between the greatest and
smallest entropies for widget-properties on all 3 AUTs. But
the average entropies are close to 0, meaning a big portion
of the widget-properties show stable values.

In the next step we calculate and rank the weighted dis-
tances of widget-properties between v1 and v2 and the re-
sults are shown in Table 6. For each test case, we show the
total number of widget properties collected by executing it
on v1 in Column “Total #”. Then we pair up the GUI el-

Table 5: Stability of Widget Properties
AUT Max Min Avg
jEdit 1.94 0.00 0.02
Jmol 2.07 0.00 0.02

JabRef 1.61 0.00 0.04

ements with widgets collected from execution of the same
test case on v2, and the number of paired widget-properties
are shown in Column “Paired #”. Then among those paired
widget properties, we find pairs that have different property
values, i.e., possible indications of failures. The number of
mismatching pairs are shown in Column “Mismatching #”.
Finally, we rank all mismatching pairs of widget properties
in ascending order of their weighted distance. To evaluate
the effectiveness of our technique, we manually identify the
mismatch that reveals the failure, and find out its position
in the ranking which is shown in Column “Ranking” of the
table.

As shown in Table 6, all test cases generate a number of
mismatches most of which are false positives. With 100%
test cases generating false positives, it is specially challeng-
ing and important to effectively percolate to the top mis-
matches related with real bugs. The results in Table 6 show
that autoOrac successfully percolate real bugs to the top 30
of all the lists of mismatches, especially for Bug 3645 and 65
where real bugs are placed at top 5 among tens or hundreds
of false positives. The mismatch related with Bug T3 is not
located in the very top of the list because the buggy property
“Text” involves long HTML contents. Since many elements
in HTML such as properties and class names are unordered,
thus semantically equivalent HTML contents are often ob-
served to have different texts which lead to a low stability
score of the property. The test case that triggers Bug 1130
can also trigger about 80 similar bugs at the same time.
As observed from the ranked list, the mismatches related to
these bugs, including Bug 1130, are located at the 6th-83th
place and have very close weighted distances (ranging from
0.65 to 0.69).

4.1.2 Addressing RQ2
To fully address the research question, we firstly study the
average stability of each property across widgets to grasp a
overview of their characteristics.



Table 6: Widget Rankings
Bug Id Total # Paired # Mismatching # Ranking

3645 4147 3818 23 3
T3 2004 142 10 9
65 1555 1212 202 4

1130 2128 1814 92 30

Table 7: Sample Flaky and Stable Properties
Property jEdit Jmol JabRef

IconImage 0.97 1.04 1.61
X-coord 0.34 0.38 0.44

Width 0.07 0.06 0.05

isEnabled 0.0 0.01 0.21
isEditable 0.0 0.0 0.0

Text 0.0 0.0 0.0

Table 7 shows the average entropies of some of the most
stable and flaky properties in the 3 AUTs. As a general
trend, GUI related properties such as iconImage, X-coord
and width are more flaky with higher entropy values, and
function related properties such as isEnabled, isEditable and
text are more stable with lower entropy values, with property
isEnabled as the only exception observed to have a higher
average entropy in one AUT.

Further, to clarify how much each property (associated with
its widget) contributes to the false positives, we group the
false positives in the final mismatches by property. In Ta-
ble 8, we show the properties that are major reasons of false
positives. These properties can be divided into 2 general
groups:

• GUI rendering properties including icon (the icon
image of a widget), width/height (the width/height of
a window or a widget in pixels), X-/Y-coord (the X-
/Y-coordinate of the top-left corner of a window or a
widget), font (the font type and size of the textual con-
tents of a window or widget), foreground/background
(the foreground/background color of a window or a
widget), etc.

• Functional properties including isSelected (a boolean
value indicating whether a widget is selected/focused
or not), isEnabled (a boolean value indicating whether a
widget is usable or not), text (the text shown on a wid-
get or container), locale (a locale stands for a specific
country, region or native), accelerator (an accelerator
is the shut-cuts for a certain widgets), etc.

The results show that rendering properties associated with
corresponding widgets make up 93% of all false positives and
are thus much more flaky than functional widget-properties.
This makes functional properties more reliable as automatic
oracles. The rendering properties are purely related to the
rendering of graphical interface and less related to the cor-
rectness of functionalities of AUTs. Unless a bug which fails
to properly render a GUI object due to problems of the OS
or the standard GUI library which is very unlikely to hap-
pen, we can safely exclude those properties to reduce false

positives in autoOrac. When a bug is related with a ren-
dering property, it could be more difficult to be identified.
But fortunately the biggest advantage of our technique is
that it never treats a property in isolation – a property is
always bound with a GUI widget. And by associating wid-
get and properties, our ranking model based on entropy will
automatically figure out the most reliable widget-properties.

5. CONCLUSIONS & FUTURE WORK
Much prior work on GUI reference testing and test oracles
based on object/GUI state assumes that the GUI state can
be obtained reliably. In this paper, we showed that this is
not a reasonable assumption. For a given set of test cases
and widget-properties, we showed that if all elements of the
GUI state are considered during reference testing, all test
cases would fail. Each of the failures would need to be ex-
amined manually, requiring a significant amount of work,
perhaps eliminating the benefits of test automation.

While recognizing the limitations in our computing plat-
forms and tools to effectively and predictably capture GUI
state, we presented a new solution that ranks state mis-
matches based on the “flakiness” or “instability” of a widget
property. We used entropy to model this instability and used
it to rank a widget property – the more unstable, the less
it is trusted for a test oracle. We showed that such a rank-
ing helps to percolate true mismatches to the top (they are
highly ranked), thereby helping the human tester to focus
on a prioritized list of failures.

We have identified several directions for future work. First,
we need to extend our experiments to additional subjects,
bugs, and widget properties, so that we can start to refine
our classification of flaky properties. Second, we need to
add different types of bugs, especially those in which wid-
gets may be missing in one version, and hence, comparison
for reference testing may be impossible. Finally, we will ex-
amine non-GUI applications to determine whether similar
problems happen in their reference testing.

Our study shows that the ranking scheme ranks faulty prop-
erties higher. However, we need to determine if this will ac-
tually help software engineers in practice, for which we will
conduct a study. We need also to determine a proper cutoff
point of mismatches for engineers to check.

Acknowledgments
This material is based on research sponsored by the National
Science Foundation Grant Number 1205501 and by DARPA
under agreement number FA8750-14-2-0039. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon.

6. REFERENCES
[1] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim.

Entropy-based test generation for improved fault
localization. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International
Conference on, pages 257–267, Nov 2013.

[2] C. Csallner and Y. Smaragdakis. Jcrasher: an
automatic robustness tester for java. Software:
Practice and Experience, 34(11):1025–1050, 2004.



Table 8: False Positives Grouped by Property
Bug ID Total Font Width Height Icon isEnabled isSelected Y-coord Text Locale Foreground Accelerator

3645 22 3 3 5 5 5
T3 9 8 1
65 201 103 37 33 23 1 2

1130 14 8 3 2 1
Total 246 103 48 47 28 5 5 2 2 2 1 1

[3] L. K. Dillon and Y. Ramakrishna. Generating oracles
from your favorite temporal logic specifications. In
ACM SIGSOFT Software Engineering Notes,
volume 21, pages 106–117. ACM, 1996.

[4] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and
Z. Wang. Making system user interactive tests
repeatable: When and what should we control? In
The Proceedings of The 37th International Conference
on Software Engineering (ICSE 2015), 2015.

[5] D. Hackner and A. M. Memon. Test case generator for
GUITAR. In ICSE ’08: Research Demonstration
Track: International Conference on Software
Engineering, Washington, DC, USA, 2008. IEEE
Computer Society.

[6] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and
L. Yi. An empirical investigation of the relationship
between spectra differences and regression faults.
Software Testing Verification and Reliability,
10(3):171–194, 2000.

[7] A. M. Memon. A comprehensive framework for testing
graphical user interfaces. PhD thesis, 2001. Advisors:
Mary Lou Soffa and Martha Pollack; Committee
members: Prof. Rajiv Gupta (University of Arizona),
Prof. Adele E. Howe (Colorado State University),
Prof. Lori Pollock (University of Delaware).

[8] A. M. Memon. Automated GUI Regression Testing
Using AI Planning, volume 56, pages 51–100. World
Scientific Publishing Co., 2004.

[9] A. M. Memon. Using Reverse Engineering for
Automated Usability Evaluation of GUI-Based
Applications. Springer-Verlag London Ltd, 2009.

[10] A. M. Memon, I. Banerjee, and A. Nagarajan. DART:
A framework for regression testing nightly/daily
builds of GUI applications. In Proceedings of the
International Conference on Software Maintenance
2003, Sept. 2003.

[11] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
ripping: Reverse engineering of graphical user
interfaces for testing. In Proceedings of The 10th
Working Conference on Reverse Engineering,
November 2003.

[12] A. M. Memon, M. E. Pollack, and M. L. Soffa.
Automated test oracles for GUIs. In SIGSOFT
’00/FSE-8: Proceedings of the 8th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 30–39, New York, NY, USA, 2000.
ACM Press.

[13] A. M. Memon and M. L. Soffa. Regression testing of
GUIs. In ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 118–127,

New York, NY, USA, 2003. ACM Press.

[14] A. M. Memon, M. L. Soffa, and M. E. Pollack.
Coverage criteria for GUI testing. In ESEC/FSE-9:
Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 256–267, New York, NY, USA,
2001. ACM Press.

[15] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon.
Guitar: an innovative tool for automated testing of
gui-driven software. Automated Software Engineering,
pages 1–41, 2013.

[16] C. Pacheco and M. D. Ernst. Eclat: Automatic
generation and classification of test inputs. Springer,
2005.

[17] D. J. Richardson. Taos: Testing with analysis and
oracle support. In Proceedings of the 1994 ACM
SIGSOFT international symposium on Software
testing and analysis, pages 138–153. ACM, 1994.

[18] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
Software Engineering, IEEE Transactions on,
27(10):929–948, 2001.

[19] W. E. Wong, J. R. Horgan, S. London, and
H. Agrawal. A study of effective regression testing in
practice. In Software Reliability Engineering, 1997.
Proceedings., The Eighth International Symposium on,
pages 264–274. IEEE, 1997.

[20] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for gui-based software
applications. ACM Transactions on Software
Engineering and Methodology, 16(1):4, 2007.

[21] T. Xie. Augmenting automatically generated unit-test
suites with regression oracle checking. In ECOOP
2006–Object-Oriented Programming, pages 380–403.
Springer, 2006.

[22] T. Xie and D. Notkin. Checking inside the black box:
Regression testing by comparing value spectra.
Software Engineering, IEEE Transactions on,
31(10):869–883, 2005.


